
Inverse Diffusion Curves using Shape Optimization

Supplementary Document

In this supplementary document, we first present (in §1) the detailed mathematical derivations of the formulas
used in the paper. We also provide details (in §4) of our second-order finite element method (FEM) implementation
for solving the Laplace’s equation and Poisson’s equation arose in the paper. While the derivation is mathematical,
we will also provide intuitive interpretation of the formulas and definitions when possible.

1 Basics of Shape Optimization

To make this supplementary document self-contained, we first review the basics of the theory of Shape Optimization
that our proposed method is built on. It also lays out a foundation for our derivations in §2. This section mostly
follows the textbook [SZ92], where more detailed exposition of this topic is offered. The concept of shape derivative
is concerned with the derivative value of a functional defined as a domain-related integral such as a domain integral
and a boundary integral. It indicates how much the integral changes when the domain is deformed under a velocity
field v(x ).

1.1 Domain-Related Integral

Let Ω denote a closed domain, and L1(Ω) denote the L1 functional space on Ω. We consider a domain integral:

J(Ω) =

∫

Ω

y(x ;Ω)dΩ, (1)

where the integrand y ∈ L1(Ω) depends on the choice of the domain. One example is a function y depending
on the total area of the domain Ω; another example is our diffusion curve residual (3) in the paper, as the color
function u(x ) in the integrand depends on a specific domain Ω.

Another domain-related integral is the boundary integral:

L(Γ ) =

∫

Γ

z(x ; Γ )dΓ , (2)

where Γ = ∂Ω is the boundary of Ω, and the integrand z ∈ L1(Γ ) depends on the choice of the domain and thus its
boundary. We will use the shape derivatives of both the domain integral (1) and boundary integral (2) later in this
document.

1.2 Derivative of Domain Integral With Respect to Velocity Field

Now suppose there exists a velocity field v(x ),∀x ∈ Ω. Then, under the velocity field, we can define a time
evolution of domain Ωt starting from Ω0 via

Ωt = {x (t)|x (0) ∈ Ω0,
dx
d t
= v(x ) in (0, t)} and Γt = ∂Ωt .

Here the boundary of Ωt is denoted as Γt . Intuitively, we consider Ω0 consists of a set of particles. Those particles
move along a pre-defined velocity field v(x ), starting from time 0. At time t, those particles from a deformed
domain Ωt . Mathematically, if v(x ) is a Lipschitz continuous function (i.e., v ∈ C0,1), the Ωt is always well-defined
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due to the Picard-Lindelöf theorem in the theory of ordinary differential equations [Arn83]. In addition, we define
a family of transformations, Tt : Ω0 7→ Ωt such that Tt(x0), t = [0, T], is the trajectory of a particle starting from
x0 = x (0) and moves under the velocity field v(x ).

With the transformations Tt , we can rewrite the domain integral (1) over the domain Ωt as an integral in the
initial domain Ω0. Using the classic domain transformation for integrals, we obtain

J(Ωt) =

∫

Ωt

y(x ;Ωt)dΩ=

∫

Ω0

(y(Ωt) ◦ Tt)γ(t)dΩ, (3)

where γ(t) = det(DTt) is the determinant of the transformation gradient, and (· ◦ ·) denotes a composition of two
functions. This expression enables us to introduce the derivative of the domain integral (1).

The Fréchet derivative (also known as the Eulerian Derivative) of the functional J(Ωt) at t = 0 is defined as

dJ(Ω0; v) = lim
t↓0

J(Ωt)− J(Ω0)
t

.

Here we use a slightly different notation from the ones in the paper: we explicitly write v as a parameter of dJ
to emphasize the dependence of dJ on the velocity field. From the geometric intuition, this derivative is related
to the boundary velocity v(x ),∀x ∈ Γ . Known as the Hadamard-Zeloésio Structure Theorem [DZ11], this linear
functional always exists when y,Ω and v are sufficiently regular. We now substitute (1) and (3) into the definition
of the Fréchet derivative of the domain integral (1), and obtain

dJ(Ω0; v) =

∫

Ω0

�

d
d t
(y(Ωt) ◦ Tt)γ(t) + (y(Ωt) ◦ Tt)γ

′(t)
�

dΩ

�

�

�

�

�

t=0

, (4)

where γ′(t) can be written as
γ′(t) = div (v(Tt(x0)))γt ,

Noticing at t = 0, γt = 1 and Tt(x0) = x0, we further reduce the second term in the integral of (4) at t = 0 into

(y(Ωt) ◦ Tt)γ
′(t)

�

�

t=0 = y(x0;Ω0)div (v(x0)) .

Next, the time derivative in the first term is defined as

ẏ(Ω0; v) :=
d
d t
(y(Ωt) ◦ Tt)

�

�

�

�

t=0

= lim
t↓0

y(Ωt) ◦ Tt − y(Ω0)
t

.

Analogous to the concept of material derivatives in continuum mechanics [BW97], ẏ(Ω0; v) is the material derivative
of y(Ω0) under the velocity field v . Here again, we explicitly express ẏ with a parameter v to emphasize its
dependence on v . Using this definition in (4), we obtain

dJ(Ω0; v) =

∫

Ω0

( ẏ(Ω0; v) + y(Ω0)div(v)) dΩ

=

∫

Ω0

( ẏ(Ω0; v)−∇y(Ω0) · v + div(y(Ω0)v)) dΩ,

(5)

where the second expression follows the integration by parts.
We now describe the concept of shape derivative of y(Ω0) under the velocity field v . It is defined as

y ′(Ω0; v) := ẏ(Ω0; v)−∇y(Ω0) · v . (6)

This concept is analogous to those in continuum mechanics: the material derivative is the time derivative value in
material space. And the shape derivative is the derivative in deformed space; it measures the change rate of y(x0)
due to the boundary changes.
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With the definition of shape derivatives, we rewrite (5) as

dJ(Ω0; v) =

∫

Ω0

�

y ′(Ω0; v) + div(y(Ω0)v)
�

dΩ

=

∫

Ω0

y ′(Ω0; v)dΩ+

∫

Γ0

y(Ω0)v · ndΓ .

(7)

As a quick summary, we start from the transformation under a differential dynamical system specified by the
velocity field v . We rewrite the domain integral on Ωt as a integral over the initial domain Ω0. This allows us to
define the Fréchet derivative of the domain integral. With the definition of material derivative and shape derivative,
we simplify the Fréchet derivative of the domain integral into a form of (5). Next, we apply the same line of
derivation for deriving the derivative of a boundary integral (2).

1.3 Derivative of Boundary Integral With Respect to Velocity Field

In the paper, when we describe the regularization of curve length (in §4.3 of the paper), we also use the Fréchet
derivative of a boundary integral. We now present the related formulas, following the line of derivation in §1.2
above.

To begin with, we rewrite the boundary integral (2) over the boundary Γt as an integral over Γ0, using the
domain transformation Tt :

L(Γt) =

∫

Γt

z(x ; Γt)dΓ =

∫

Γ0

(z(Γt) ◦ Tt)ω(t)dΓ ,

where ω(t) is related to the cofactor matrix of DTt ,

ω(t) = |M(DTt)n(x0)|= γ(t)|(DTt)
−T n|.

Here D denote the spatial derivative operator, so DTt is the Jacobian of the transformation Tt . n(x0) is the boundary
normal direction at x0. Similar to the derivation in §1.2, we rewrite its Fréchet derivative as

d L(Γ0; v) =

∫

Γ0

�

d
d t
(z(Γt) ◦ Tt)ω(t) + (z(Γt) ◦ Tt)ω

′(t)
�

dΓ

�

�

�

�

�

t=0

. (8)

It can be checked that ω′(t) takes the following form:

ω′(t) = lim
t↓0

ω(t)−ω(0)
t

= div(v)− [(Dv)n] · n.

This expression is also the definition of tangential divergence of v , denoted as divΓ (v), since the divergence of v
(the first term) is subtracted by the normal component of the divergence (the second term). Then, similar to the
definition of ẏ in §1.2 above, there is also a material derivative of z(Γ0) under the velocity v :

ż(Γ0; v) =
d
d t
(z(Γt) ◦ Tt)

�

�

�

�

t=0

= lim
t↓0

z(Γt) ◦ Tt − z(Γ0)
t

.

Th definitions of tangential divergence divΓ (v) and material derivative ż(Γ ; v) further simplify the Fréchet derivative
d L(Γ ; v) into

d L(Γ0; v) =

∫

Γ0

ż(Γ0; v)dΓ +

∫

Γ0

z(Γ0)divΓ0(v)dΓ ,

where divΓ0(v) is the tangential divergence of v on Γ0, as introduced above.
Similar to the definition of y ′ in (6), we also have the shape derivative of z′(Γ ),

z′(Γ ; v) := ż(Γ ; v)−∇Γ z(Γ ) · v , (9)
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where we use the notation of tangential gradient, ∇Γ , because z so far is defined only on the boundary Γ . In
particular, let z̃ be an extension of z, z̃ ∈ C2(U) and z̃|Γ = z; U is an open neighborhood of Γ on R2. Then we can
define the tangential gradient,

∇Γ z = ∇z̃|Γ −
∂ z̃
∂ n

n. (10)

Lastly, it follows that

d L(Γ0; v) =

∫

Γ0

z′(Γ0; v)dΓ +

∫

Γ0

�

∇Γ0z(Γ0) · v + z(Γ0)divΓ0(v)
�

dΓ

=

∫

Γ0

z′(Γ0; v)dΓ +

∫

Γ0

divΓ0 (z(Γ0)v) dΓ

=

∫

Γ0

z′(Γ0; v)dΓ +

∫

Γ0

z(Γ0)κvndΓ .

(11)

where κ = divΓ0n is the mean curvature on Γ0, n is the normal direction on a boundary location, and vn is the
boundary normal velocity. As a simple example of using this formula, in §4.3 of the paper, we consider the boundary
integral

∫

B dΓ , which is a special case for z = 1. Thus, z′ = 0 in this case; and using the expression (11) above, we
obtain Equation (14) of the paper.

1.4 Cost Functional for Curve Placement

After laying out the background about shape derivatives, we now introduce the cost functional that we propose in
the paper. In the next subsection, we will derive formulas for minimizing this cost functional.

Consider the cost functional in §4.1 of the paper. We define the L2 residual of diffusion curve approximation
using the following domain integral:

J(Ωt) =
1
2

∫

Ωt

(u(x ;Ωt)− I(x ))2dΩ, (12)

where u(x ;Ωt) ∈ H1(Ωt) is a weak solution of the Laplace’s equation. According to (7), the Fréchet derivative of
this functional is

dJ(Ω0; v) =

∫

Ω0

(u(Ω0)− I)(u′(Ω0; v)− I ′)dΩ+
1
2

∫

Γ0

(u(Ω0)− I)2vndΓ . (13)

In the first term, the shape derivative of I(x ) vanishes, because

I ′(x ) = İ(x )−∇I(x ) · v = lim
t↓0

I ◦ Tt − I
t

−∇I(x ) · v = 0.

In the second term, we notice that u(x ;Ω0)|Γ0 = I(x ) because of the construction of the boundary condition of the
Laplace’s equation (i.e., the Equation (2) of the paper). Thus, the second term vanishes. And we obtain

dJ(Ω0; v) =

∫

Ω0

(u(Ω0)− I)u′(Ω0; v)dΩ. (14)

1.5 Derivatives with PDE Constraints

We now outline the mathematical development for transforming the cost functional as linear forms of vn. As stated
in the paper, given a color field I(x ) : R2→ R, we seek a set of diffusion curves satisfying

u(x ;Ω) = I(x ;Ω), ∀x ∈ Γt ,
∆u(x ;Ω) = 0, otherwise,

(15)
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to approximate the color filed I . Therefore, u is a harmonic function. Our central goal in this subsection is to
express the Fréchet derivative (14) as linear form of vn|Γ . We then extend the derivation to compute the derivatives
of the cost functional introduced in §1.4.

We first derive the shape derivative of u satisfying the Dirichlet boundary value problem (15). From the Dirichlet
boundary condition of (15), it follows that

∫

Γt

u(Ωt)φdΓt =

∫

Γt

I(Ωt)φdΓt ,

where Γt is the boundary of a domain Ωt , and φ is an arbitrary test function in the Hilbert space H1
0(Γt). Both sides

of this expression are boundary integrals over Γt . Taking the Fréchet derivative at t = 0 on both sides (using (11)),
we obtain
∫

Γ0

u′(Ω0; v)
�

�

Γ0
φdΓ +

∫

Γ0

�

∂

∂ n
(u(Ω0)φ) + κu(Ω0)φ

�

vndΓ =

∫

Γ0

I ′(Ω0; v)
�

�

Γ0
φdΓ +

∫

Γ0

�

∂

∂ n
(I(Ω0)φ) +κI(Ω0)φ

�

vndΓ =

∫

Γ0

�

∂

∂ n
(I(Ω0)φ) + κI(Ω0)φ

�

vndΓ (16)

The last equality is due to the vanishing I ′(Ω0; v), because I(X) is independent from the choice of a domain, as can
be easily verified according to (6). Since φ can be any test function, if we further assume ∂ φ

∂ n = 0 and notice that
u(Ω; x ) = I(Ω; x ), ∀x ∈ Γ0, Equation (16) becomes

∫

Γ0

u′(Ω0; v)
�

�

Γ0
φdΓ +

∫

Γ0

∂ u(Ω0)
∂ n

φvndΓ =

∫

Γ0

∂ I(Ω0)
∂ n

φvndΓ . (17)

On the other hand, assume the test function is in a Hilbert space on the entire domain Ωt (i.e., φ ∈ H1
0(Ωt)). The

weak form of the Laplace’s equation is
∫

Ωt

∆u(Ωt)φdΩ=

∫

Ωt

∇u(Ωt) · ∇φdΩ= 0

Taking the Fréchet derivative of the first domain integral of this expression (using (7)) yields
∫

Ω0

∆u′(Ω0; v)φdΩ+

∫

Γ0

∆u(Ω0; v)φvndΓ =

∫

Ω0

∆u′(Ω0; v)φdΩ= 0, (18)

where the first equality is because u is a harmonic function (i.e., ∆u = 0). Putting both Equation (17) and
Equation (18) together yields a strong form for u′(Ω; V ),

u′(Ω0; v) =
�

∂ I(Ω0)
∂ n

−
∂ u(Ω0)
∂ n

�

vn, on Γ0,

∆u′(Ω0; v) = 0, otherwise.
(19)

Next, we simplify the Fréchet derivative (14) that we introduced in §1.4. For the cost functional (12), we
rewrite (14) as a linear form of vn using an adjoint method. In particular, we solve the adjoint problem,

p(x ;Ω0) = 0, on Γ0,

∆p(x ;Ω0) = u(x ;Ω0)− I(x ), otherwise.
(20)

Using this adjoint solution together with integration by parts and Green’s formula, we have
∫

Ω0

(u(Ω0)− I)u′(Ω0; v)dΩ=

∫

Ω0

∆pu′(Ω0; v)dΩ

=

∫

Ω0

div
�

∇p(Ω0)u
′(Ω0; v)

�

dΩ−
∫

Ω0

∇p(Ω0) · ∇u′(Ω0; v)dΩ

=

∫

Γ0

∂

∂ n
p(Ω0)u

′(Ω0; v)dΓ −
∫

Ω0

∇p(Ω0) · ∇u′(Ω0; v)dΩ
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For the last integration term, using integration by part yields
∫

Ω0

∇p(Ω0) · ∇u′(Ω0; v)dΩ=

∫

Ω0

div
�

p∇u′
�

dΩ−
∫

Ω0

p∆u′dΩ=

∫

Γ0

p
∂ u′

∂ n
dΩ−

∫

Ω0

p∆u′dΩ

Because both p and ∆u′ are zero on the boundary Γ0, this term vanishes. Meanwhile, from the Dirichlet boundary
condition of (19), we obtain

∫

Ω0

(u(Ω0)− I)u′(Ω0; v)dΩ=

∫

Γ0

∂

∂ n
p(Ω0)u

′(Ω0; v)dΓ =

∫

Γ0

∂ p(Ω0)
∂ n

�

∂ I(Ω0)
∂ n

−
∂ u(Ω0)
∂ n

�

vndΓ . (21)

This is a linear form of vn. The last expression here gives the expression BR(x ) in Equation (9) of the paper.

2 Extensions

While this paper focuses on the problem of curve placement, our curve optimization algorithm is more versatile
than what we have presented. To demonstrate its generality, this section discusses two extensions to which our
method can be easily extended.

2.1 Optimization of Outer Boundary

In §4 of the paper, our curve optimization algorithm uses a fixed outer boundary, which forms an unchanged region
Ω to define the residual (12). However, this is by no means a limitation of our algorithm. We can easily extend it
to optimize the outer boundary together with curves inside. To this end, we define a new residual function as

R̄(Ω;B) =
R(Ω,B)

AΩ
=

1
2AΩ

∫

Ω

(u(x )− I(x ))2 dΩ, where AΩ =

∫

Ω

dΩ.

Following the definition of Eulerian derivative, we have a reciprocal rule of this derivative:

dJ̃(Ω0; v) = lim
t↓0

J̃(Ωt)− J̃(Ω0)
t

= lim
t↓0

1
t

J(Ωt)A(Ω0)− J(Ω0)A(Ωt)
A(Ωt)A(Ω0)

=
1

A(Ω0)2
[dJ(Ω0; v)A(Ω0)− dA(Ω0; v)J(Ω0)]

According to (7), the Fréchet derivative of A(Ωt) at Ω0 is simply
∫

Γ0
vndΓ . Consequently, the Fréchet derivative of

J̃(Ω0) is

dR̃(Ω0; v) =
1

A(Ω0)

∫

Ω0

(u(Ω0)− I)u′(Ω0; v)dΩ−
R(Ω0)
A2(Ω0)

∫

Γ0

vndΓ . (22)

This equation involves the domain integral over Ω0. Lastly, applying (21) allows us to express the derivative
dR̄(Ω;B) as a linear form of vn (see derivation in §3 of the supplementary document):

dR̄(Ω;B) =
1

AΩ

∫

Γ

�

∂ p(x )
∂ n

�

∂ I(x )
∂ n

−
∂ u(x )
∂ n

�

−
R(Ω;B)

AΩ

�

vn dΓ . (23)

With this formula, we can choose the boundary velocity vn for minimizing the objective function, and thus optimize
both the outer boundary and inner curves.

2.2 Regularization of Color Variation on Curves

Diffusion curve images allow the user to edit their color distribution by adjusting color values define along curves.
From this point of view, complex color variation along curves can degenerate the user editability. To this end, we
add one more regularizer in the objective function (12) of the paper:

R̂(Ω;B) =
1
2

∫

Ω

(u(x )− I(x ))2 dΩ+α

∫

B
dΓ +

β

2

∫

B
(∇u(x ) · t (x ))2 dΓ , (24)
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where t is the tangential direction pointing along the curve at x . The Fréchet derivative of the first term has been
presented in (14). The Fréchet derivative of the second term has been introduced above and given in Equation (11)
of the paper. In the rest of this section, we focus on the Fréchet derivative of the last term. We denote the last term
above as L̂(Bt) =

∫

Bt
(∇u(x ) · t (x ))2dΓ .

According to (11), we write the following Fréchet derivative of L̂(Bt) at the initial curve B0:

d L̂(B0; v) = 2

∫

B0

(∇u(x ) · t (x ))(∇u(x ) · t (x ))′dΓ +
∫

B0

(∇u(x ) · t (x ))2κvndΓ

= 2

∫

B0

(∇u(x ) · t (x ))
�

(∇u(x ))′ · t (x ) +∇u(x ) · t ′(x )
�

dΓ +

∫

B0

(∇u(x ) · t (x ))2κvndΓ .

(25)

At this point, the last term is already a linear form of vn. The first term involves both ∇u′(x ) and t ′(x ). For the
shape derivative of t ′(x ), we first follow the definition in (9) and obtain

t ′(x ) = ṫ (x )−∇Γ t (x ) · v .

From the derivation above, we know only the normal velocity is involved in the Fréchet derivative of domain-related
integrals. Thus if we set v = vnn, then the last term ∇Γ t (x ) · v vanishes, because ∇Γ t (x ), which is a matrix, has
every column vector tangential to the curve due to the definition of tangential gradient (10). So we obtain

t ′(x ) = ṫ (x ) = ∂t vn − t t T∂t vn.

Similarly, (∇u(x ))′ can be expressed as
(∇u(x ))′ = J[u]vn

Putting these parts together, we obtain a boundary integral as a linear form of vn. Thereby, the cost functional (24)
can be optimized using our algorithm.

3 Removal of Line Segments

In §5.4 of the paper, we mark a line segment as unnecessary when the absolute value of

dn(x ) =
∂ u(x )
∂ nl

+
∂ u(x )
∂ nr

, x ∈ B, (26)

is small. To see the reason mathematically, we first express the solution u of the Laplace’s equation, (1) in the
paper, as a boundary integral, similar to the formula used in [SXD+12, IKCM13, STZ14]:

u(x ) = −
∫

Γ

�

dn(y)G(x ; y)− c(y)
∂ G(x ; y)
∂ n(y)

�

dΓ (y), (27)

where G(x , y) is the Laplace Green’s function; c(y) = Cl(y)− Cr(y); and dn follows the definition in (26). On a
curve segment in a continuously colored region, c(y) always vanishes because of the boundary condition

u(x ) = I(x ), ∀x ∈ B∪ ∂Ω, (28)

we used for solving the Laplace’s equation. If dn(y) is sufficiently close to zero, then the contribution of that curve
segment in the boundary integral (27) is negligible, and thus we can safely remove that segment.

4 Second-Order FEM Solve of Poisson’s Equation

We use the standard second-order FEM to solve the Laplace’s and Poisson’s equations arose in the paper. Subjecting
to Dirichlet boundary conditions, the equation we solve is

∆u(x ) = f (x ), x ∈ Ω. (29)
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When we solve the Poisson’s equation (20), f (x ) = u(x ;Ω0)− I(x ). When we solve the Laplace’s equation (15),
f (x ) = 0. In our FEM implementation, we discretize the domain Ω using a triangle mesh, and construct a linear
system Ax = b. There are plenty of literatures about FEM theory and implementation [ZM71, Wri08]. In this
section, we only present necessary formulas for constructing the linear system A in our implementation.

First, the weak form of a Poisson’s equation (29) is

−
∫

Ω

∇u · ∇vdS =

∫

Ω

f vdS. (30)

For the Laplace’s equation, the right hand side simply vanishes. Inside a triangle
of the mesh that discretizes the domain Ω, the solution u(x ) is approximated
using 6 second-order finite element basis NI , I = 1...6:

u(λ,ξ) =
6
∑

I=1

UI NI (λ,ξ).

where

N1 = λ(2λ− 1), N4 = 4ξλ

N2 = ξ(2ξ− 1), N5 = 4ξη

N3 = η(2η− 1), N6 = 4ηλ,

Here λ, ξ and η are the barycentric coordinates of x on the triangle. Because λ + η + ξ = 1. We express NI
as a function of λ and ξ, because η is uniquely determined once λ and ξ are known. Similarly the position x
parameterized by λ and ξ is determined by the interpolation in a triangle as

x (λ,ξ) =
6
∑

I=1

XI NI (λ,ξ).

where XI are the nodal positions of a triangle.
The Jacobian of basis functions NI is

[JN (λ,ξ)] =









∂ N1
∂ λ

∂ N1
∂ ξ

∂ N2
∂ λ

∂ N2
∂ ξ

. . .
∂ N6
∂ λ

∂ N6
∂ ξ









,

And the Jacobian of x (λ,ξ) is

[Je(λ,ξ)] =

� ∂ x
∂ λ

∂ x
∂ ξ

∂ y
∂ λ

∂ y
∂ ξ

�

=
�

X1 X2 . . . X6

�

[JN (λ,ξ)].

Notice in each triangle the nodal positions are fixed, and in our setting, X4, X5, and X6 are respectively the center
point of the three triangle edges, that is, X4 =

X1+X2
2 , X5 =

X2+X3
2 , and X6 =

X3+X1
2 . In this case, we obtain a simple

form of Je:
Je =

�

X0 − X2 X1 − X2

�

.

In addition, we have the relationship
� ∂ N1
∂ λ

∂ N2
∂ λ . . . ∂ N6

∂ λ
∂ N1
∂ ξ

∂ N2
∂ ξ . . . ∂ N6

∂ ξ

�

= [Je(λ,ξ)]T
� ∂ N1
∂ x

∂ N2
∂ x . . . ∂ N6

∂ x
∂ N1
∂ y

∂ N2
∂ y . . . ∂ N6

∂ y

�

.

Now we discretize the weak form (30) to obtain the finite element linear system. In particular, for every triangle ∆,
the weak form integral is written as

∫

∆

6
∑

i=1

Ui∇Ni(λ,ξ) · ∇N j(λ,ξ)det Je(λ,ξ)dλdξ=

∫

∆

f N j(λ,ξ)det Je(λ,ξ)dλdξ, (31)

8



where ∇Ni · ∇N j is computed using

∇Ni(λ,ξ) · ∇N j(λ,ξ) =

� ∂ Ni
∂ λ
∂ Ni
∂ ξ

�T

[Je(λ,ξ)]−1[Je(λ,ξ)]−T

�

∂ N j

∂ λ
∂ N j

∂ ξ

�

.

In this discretization, the unknowns are discretized value UI at the triangle mesh’s nodal positions. The equation (31)
is a linear system of UI that we need to solve.
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