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Fabrics are essential to our everyday lives. Recently advances in physically

based rendering techniques and computing power have made it possible to

accurately model and reproduce their appearance. This has led to many appli-

cations in not only computer graphics but also other fields including industrial

design, retail, and entertainment.

Traditionally, fabrics are treated as infinitely thin 2D sheets. These surface-

based reflectance models, although being conceptually simple, have insufficient

power to describe a fabric’s small-scale 3D geometries, such as disorganized

layers of fibers in felts. Thus, these models cannot accurately reproduce the

fabric’s thickness and fuzziness, limiting the level of realism they can offer.

In contrast, volumetric models, which has recently been very successful in

modeling fabric appearance, explicitly express those fiber-level structures, upon

which greatly varying visual effects, from anisotropic highlights to deep textures,

emerge automatically. However, volumetric models are generally difficult to

build: one would need to specify spatially varying optical properties at high

(e.g., micron) resolutions.

This dissertation presents a family of algorithms that introduce a brand new

way to automatically build and efficiently render volumetric fabric models at

micron-resolution. These models capture rich details at fiber-level, yielding

highly realistic renderings even under extreme close-ups.

Our first contribution tackles the challenge of automated creation of high



fidelity fabric models. Our method uses volume imaging techniques to measure

a fabric’s detailed structural information. Such information is then combined

with a photograph to form a complete model through an appearance match-

ing process. The resulting model offers fabric renderings with unprecedented

quality.

CT scanning fabric samples can be highly time consuming. Our second con-

tribution aims for creating volumetric models for woven fabrics with complex

designs under minimal measurement cost. Our approach starts with building a

small database of cloth samples with elementary weave patterns. Then, given

an input pattern, a volumetric synthesis stage is performed to form the final vol-

ume by copying contents from the database while keeping visible artifacts (such

as seams) minimized. Fabric models created by this method have been used by

textile researchers at Rhode Island School of Design to preview the appearances

of their designs.

Our third work focuses on efficient rendering of high-resolution fabric vol-

umes. Based on the observation that these volumes contain repeated structures

(i.e., multiple instances of the same content in the database), we precompute

light transport information for those structures, and a single precomputation

can be reused for many designs synthesized from the same database. During

the rendering process, the precomputed information is modularly combined

through a Monte Carlo Matrix Inversion (MCMI) framework. This method has

accelerated the rendering of thick fabrics by an order of magnitude.

Finally, we switch gears and introduce high-order similarity relations to com-

puter graphics. This theory originates in applied physics and studies when two

sets of material scattering parameters would lead to identical appearance. We

introduce a numerical algorithm to utilize this theory in its general high-order



form. The practical usefulness of our method is demonstrated using forward

and inverse rendering of translucent media.

The approaches presented in this dissertation have created fabric renderings

with unprecedented fidelity. Remaining challenges include developing more

general synthesis technique to support a wider range of fabric structures (such as

knitworks) as well as finding more powerful light transport models and inverse

rendering algorithms so that the rendered fabrics match photographs under a

wide combination of viewing and lighting configurations. We also believe the

techniques introduced in this dissertation can provide valuable insights for de-

veloping appearance modeling techniques for general material beyond fabrics.
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Sean Bell, Pramook Khungurn, Daniel Schroeder, and Timothy Langlois.

Finally, I thank my family for their unfaltering love and support. I thank my

wife Siman for the great deal of love and understanding. I thank my parents

Bin and Tao: it was them who introduced me to computers and BASIC/LOGO

programming when I was a child! I thank my grandparents Kai and Jie for caring

and teaching me, for picking me from school, and for the new-year gifts. Sadly,

they are no longer here to watch me completing this thesis. I dedicate this thesis

to them.

vi



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1
1.1 Contributions and outline . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 9
2.1 Rendering basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The physics of light transport . . . . . . . . . . . . . . . . . 9
2.1.2 Radiative transfer . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Monte Carlo integration . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Volume path tracing . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Anisotropic media . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Fabrics as a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Prior Work 20
3.1 Radiative transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Fabric appearance modeling . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Physically based rendering of translucent media . . . . . . . . . . 23
3.4 Example-based synthesis . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Building volumetric fabric models using micro CT imaging 28
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Fiber scattering model . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Alternative flake distribution . . . . . . . . . . . . . . . . . 34
4.4 CT image processing . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Recovering the orientation field . . . . . . . . . . . . . . . . 36
4.4.2 Denoising CT images . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3 Data replication . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Appearance matching . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1 Metrics for matching . . . . . . . . . . . . . . . . . . . . . . 41
4.5.2 Optimization procedure . . . . . . . . . . . . . . . . . . . . 42

4.6 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6.1 Alternative sampling strategy . . . . . . . . . . . . . . . . . 45
4.6.2 Sampling the flake distribution . . . . . . . . . . . . . . . . 46

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



5 Structure-aware synthesis for predictive woven fabric appearance 56
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Structure-aware synthesis . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Input specification . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.2 Input data creation . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.3 Synthesis at the yarn level: the problem . . . . . . . . . . . 65
5.4.4 Synthesis at the yarn level: our algorithm . . . . . . . . . . 68
5.4.5 Edge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Exemplar creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.1 Yarn tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.2 Weave pattern detection . . . . . . . . . . . . . . . . . . . . 76
5.5.3 Voxel segmentation . . . . . . . . . . . . . . . . . . . . . . . 77
5.5.4 Volume alignment . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.5 Weaving grid registration . . . . . . . . . . . . . . . . . . . 78
5.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Modular flux transfer 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Background: path integral formulation . . . . . . . . . . . . . . . . 88
6.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 Modular transfer pipeline . . . . . . . . . . . . . . . . . . . 96

6.4 Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5 Runtime evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5.1 Source flux evaluation . . . . . . . . . . . . . . . . . . . . . 101
6.5.2 Modular transfer . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5.3 Final gathering . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6.1 Flux field visualizations . . . . . . . . . . . . . . . . . . . . 109
6.6.2 Photon mapping comparisons . . . . . . . . . . . . . . . . 109
6.6.3 Rendered results . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 High-order similarity relations in radiative transfer 118
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Similarity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.1 Derivation of similarity relations . . . . . . . . . . . . . . . 125
7.3.2 Discussion: relation to first-order methods . . . . . . . . . 130
7.3.3 Example: equivalence classes . . . . . . . . . . . . . . . . . 131

viii



7.4 Solving for altered parameters . . . . . . . . . . . . . . . . . . . . . 133
7.4.1 Existence of the altered phase function . . . . . . . . . . . 134
7.4.2 Computing the altered phase function . . . . . . . . . . . . 136

7.5 Application: inverse rendering . . . . . . . . . . . . . . . . . . . . 139
7.6 Application: forward rendering . . . . . . . . . . . . . . . . . . . . 140

7.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.6.2 User-specified parameter . . . . . . . . . . . . . . . . . . . 143
7.6.3 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.7.1 Performance versus accuracy . . . . . . . . . . . . . . . . . 147
7.7.2 Higher-order similarity relations . . . . . . . . . . . . . . . 148
7.7.3 Spanning the 2D perception space . . . . . . . . . . . . . . 149
7.7.4 Rendered results . . . . . . . . . . . . . . . . . . . . . . . . 150

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Conclusion 156
8.1 Future research directions . . . . . . . . . . . . . . . . . . . . . . . 157

A Appendix for Chapter 7 160
A.1 Derivation of the diffusion equation . . . . . . . . . . . . . . . . . 160

A.1.1 Integrated RTE . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.1.2 Order-0 and order-1 versions . . . . . . . . . . . . . . . . . 161
A.1.3 Diffusion equation . . . . . . . . . . . . . . . . . . . . . . . 163

A.2 Generalized order-1 similarity relation . . . . . . . . . . . . . . . . 164
A.3 Phase function moments . . . . . . . . . . . . . . . . . . . . . . . . 165
A.4 Results: performance versus accuracy . . . . . . . . . . . . . . . . 166
A.5 Results: overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.6 Results: spanning the perceptual space . . . . . . . . . . . . . . . . 171

A.6.1 Rendered images . . . . . . . . . . . . . . . . . . . . . . . . 171
A.6.2 Phase function plots . . . . . . . . . . . . . . . . . . . . . . 179

Bibliography 187

ix



LIST OF TABLES

4.1 Fiber filter and scattering model parameter values for our ma-
terial samples: s and t are the shape parameters, and h is the
volume size of the filter (Section 4.4); εd and εJ are the noise
thresholds. The optical parameters include d, the density mul-
tiplier, and the parameters found by our appearance matching
algorithm: γ, the standard deviation of the flake distribution, and
α, the single-scattering albedo. . . . . . . . . . . . . . . . . . . . . 44

6.1 Summary of notation; bold letters indicate vectors. . . . . . . . . 90
6.2 Scene statistics. The table shows the number of blocks in the

scene, the number of exemplar blocks, the precomputation time
for all exemplars (in hours), average path length, and rendering
time (in minutes) for path tracing (PT) and our method (MFT).
Felt, twill, and velvet correspond to Figure 6.14; damask to both
designs in Figure 6.15; wood and synthetic to Figure 6.16. The
MFT rendering time includes the portion spent on computing the
source flux Φs (by tracing particles from light sources), which is
less than 2 minutes for all our results. The Monte Carlo matrix
inversion step takes less than 15% of the rendering time for all
scenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

x



LIST OF FIGURES

1.1 Fabrics in our everyday lives. . . . . . . . . . . . . . . . . . . . . . 1
1.2 Close-up photographs of three kinds of fabrics: (a) silk satin;

(b) denim; (c) velvet. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The main pipeline of our technique presented in this disserta-

tion. (a) We present a brand new method (Chapter 4) that au-
tomatically builds micron-resolution fabric appearance models
by combining photographs and micro computed tomography
(CT) scans of real cloth samples. (b) Using fabric models with
elementary patterns, our method can synthesize highly compli-
cated models with user-specified designs (Chapter 5). (c) The ren-
derings (Chapter 6) of our models match physically constructed
samples very well, and can be used to predict the appearance of
fabric designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Physical interpretations for the different terms in the radiative
transfer equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Volume rendering equation: evaluation of L(x,ω) through inte-
gration over the dashed line segment. . . . . . . . . . . . . . . . . 12

2.3 Volume path tracing. Given a location x and a direction ω: (a)
new position x1 is first sampled along (x,−ω); (b) new direction
ω1 is drawn according to the phase function f at x1. . . . . . . . . 14

2.4 Renderings of (from left to right): soaps, olive oil, blue curacao,
and reduced fat milk created using volume path tracing [30]. . . 16

2.5 Zoomed renderings of a scarf represented with isotropic (left)
and anisotropic (right) media [43]. Accounting for anisotropy
leads to more realistic highlights and color variations. . . . . . . 17

2.6 Yarn structures of a woven and a knitting pattern [51]. . . . . . . 19

4.1 We build volumetric appearance models of complex materials
like velvet using CT imaging: (left) CT data gives scalar density
over a small volume; (center) we extract fiber orientation (shown
in false color) and tile larger surfaces; and (right) we match ap-
pearance parameters to photographs to create a complete appear-
ance model. Both fine detail and the characteristic highlights of
velvet are reproduced. . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Our volume appearance modeling pipeline. (a) CT images are
acquired, (b) the density field and orientation field of the volume
are created, and (c) optical parameters of the volumetric model
are assigned by matching statistics of photographs with rendered
images. (d) Larger models are rendered using our acquired volu-
metric appearance and geometry models. . . . . . . . . . . . . . . 31

xi



4.3 Comparison between the sinp θ-type distribution with exponent
p (blue) and our Gaussian-type distribution (red) with standard
deviation γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Computing function J in 2D: (a) shape of the filter q; (b) when q
is aligned to the fiber; (c) when q is unaligned. . . . . . . . . . . . 36

4.5 Computed orientation field for a piece of gabardine with each
direction (x, y, z) mapped to RGB color (|x|, |y|, |z|). Left: without
thresholding on J ; right: with thresholding on J . . . . . . . . . . 38

4.6 (a) Renderings of a cylinder tiled with the satin volume, with
fixed albedo and varying lobe width γ and density mlutiplier
d. (b) The corresponding standard deviation of pixel values for
the satin sample: sharper lobes provide shinier appearance and
result in greater standard deviation. The role of d is more compli-
cated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Appearance matching results for (from top to bottom) (1) silk,
(2) gabardine, (3) velvet, and (4) felt. Columns (a) and (c) show
photographs of the materials, and (b) and (d) show rendered im-
ages. The left two columns form the appearance matching pair,
in which the blue boxes indicate manually selected regions for
performing our matching algorithm. The right two columns, the
validation pair, validate our matches qualitatively under differ-
ent configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Fabrics in draped configurations with our volumetric appear-
ance model: (a) silk satin, (b) gabardine, (c) velvet, (d) felt. . . . . 48

4.9 Renderings obtained by editing the volumetric representation.
(a) The material is flipped using a binary texture map (two light-
ing conditions are shown). (b) The gabardine sample is rendered
with a blue hue (b1); we then detect weft fibers based on their
orientation and color them white, which produces a material re-
sembling denim (b2). . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Silk satin (1) and gabardine (2) rendered with Irawan’s surface-
based representation (a) and with our model (b). . . . . . . . . . 53

5.1 We synthesize volumetric appearance models of fabrics with
complex designs using a small set of exemplars: (a) density in-
formation of exemplars obtained using micro CT imaging; (b)
fabric designs specified by weave patterns; (c) rendered results
using synthesized volume data; (d) insets showing details: see,
for example, blue yarns (top inset) hidden beneath the gray ones
that are visible through the gaps. . . . . . . . . . . . . . . . . . . . 57

xii



5.2 Example weave patterns: twill (top two rows), satin (bottom two
rows); (a) weave patterns and the corresponding 2D illustrations
where warps and wefts are respectively drawn in black and green;
(b) CT data of fabric samples with the same weave patterns; (c)
colored visualizations of the CT data; (d) a photograph of our
example fabric in which the four examples used in this figure are
marked with blue rectangles. . . . . . . . . . . . . . . . . . . . . . 59

5.3 Inputs to our algorithm: (a) shows the weave pattern; (b) and (c)
show warp and weft ID maps encoded in colors, indicating that
all but the left-most warp share the same optical properties while
all wefts are identical; (d) illustrates the visible yarn ID at each
crossing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Synthesized results using (top) naive algorithm, (middle)
greedy algorithm, (bottom) our approach: the left column shows
renderings using synthesized models; the right column shows
from which exemplar each block copies its content (encoded in
false colors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 The block in S̃1 is not a valid candidate since it does not satisfy
the correctness constraint; the blocks in S̃2 and S̃3 satisfy the con-
straint and respectively have 2 and 4 matching neighbors. . . . . 68

5.6 The dynamic programming process: computing f(i, t0) by enu-
merating different possible t′ values using Equation 5.1. For
example, here we have gain(t1, t0) = 1 whereas gain(t2, t0) =
gain(t3, t0) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Fixing the edges by moving stacks of voxels. . . . . . . . . . . . . 70
5.8 Edge fixing: constructing matrices T and L. The structure of

block i is shown in the middle, and assume that the blocks to its
right and bottom are respectively block j and k. . . . . . . . . . . 72

5.9 Randomization and edge fixing: (left) maximizing consistency
and continuity without randomization results in periodic pat-
terns; (center) introducing randomization removes such patterns;
(right) edge fixing significantly improves the seams. . . . . . . . 73

5.10 Center correction: (left) without the correction, the tracking that
starts from the left fails due to the yarn center leaving the volume;
(right) with the correction, the tracking process becomes more
robust. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.11 Comparisons between photographs of fabricated cloth samples
(left) and rendered images with the synthesized data (right): (a)
a Herringbone fabric; (b) a fabric containing all 9-twill patterns;
(c) a Jacquard fabric (design courtesy of Brooks Hagan). . . . . . 80

5.12 The industrial Jacquard loom at Rhode Island School of Design
used to weave our samples: (a) harnesses used to lift the warps;
(b) the warp yarns; (c) spools of multi-colored weft yarns; (d) the
shuttle for carrying and inserting wefts. . . . . . . . . . . . . . . . 81

xiii



5.13 Synthesized results with different weave patterns: (a) a wavy
twill; (b) a fabric composed using alternating blocks with 1/15
and 15/1 satin patterns; (c) and (d) Jacquard brocades mapped
onto pillows. Top-left: weave patterns, Bottom-right: insets. . . . 84

6.1 We introduce a modular flux transfer (MFT) framework to ap-
proximate high-order scatterings in extremely complex volumes.
(a) a scene containing a purple tablecloth with 2009× 3300 yarn
crossings represented by an anisotropic volume consisting of
1.06 × 1013 effective voxels; (b) a 5× zoomed version of the left
image, illustrating the complexity of the cloth volume; (c) a 25×
zoomed version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 The increase in the total energy of an image, and the correspond-
ing increase in the variance of a Monte Carlo path tracer, as a func-
tion of the maximum number of scattering events (with number
of samples held constant). The data is measured on our felt scene
(top of Figure 6.14), where the green single-scattering albedo has
been set to 0.99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Inserting isotropy events and diffuser events into paths makes
the underlying path integral separable, at the cost of introducing
some error. If these events are inserted into paths of sufficient
length, the error will be close to imperceptible. . . . . . . . . . . . 92

6.4 Definitions of voxels, interfaces, patches, and three types of pre-
computed transfers, each of which corresponds to a matrix. Note
that patch-to-voxel transport is the transpose of voxel-to-patch. 93

6.5 The three phases of the runtime stage of our pipeline. We use
dashed lines to indicate sub-paths with length ≥ 1 which can
contain multiple scattering events. . . . . . . . . . . . . . . . . . . 95

6.6 Cropped 2D slices of the flux field of a synthetic volume with
three blocks where the interfaces are indicated with blue ar-
rows: (left) path-traced reference; (center) applying precomputed
voxel-to-voxel transfer within blocks leads to darkening, because
paths crossing the boundaries are missing; (right) adding transfer
across boundaries addresses this energy loss. . . . . . . . . . . . 95

6.7 Visualizations of precomputed transfer matrices of a twill block
with 470 patches and 1239 non-empty voxels: (a) patch-to-patch,
(b) voxel-to-voxel, and (c) patch-to-voxel. . . . . . . . . . . . . . 97

6.8 Light paths captured by (a) source flux Φs; (b) Φs with voxel-to-
voxel transfer applied; (c) Φs with voxel-to-patch transfer applied. 101

6.9 Formation of block-diagonal matrix T̃ vv for a volume with four
blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xiv



6.10 An example of patch flux propagation. The scene contains 3
blocks and 4 patches defined over 2 interfaces. Assume that all
voxels have zero flux except for one in block 1 marked with the
red square. Then (a) shows the patch flux received by the right
patch in block 1; (b) applying flip operator Q gives patch flux
emitted by the left patch in block 2; (c) multiplying by T̃ pp gives
the patch flux received by both patches in block 2; (d) applying
another Q yields the patch flux emitted by the two patches in
blocks 1 and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.11 Convergence experiment: we rendered multiple results with our
method (solid lines) and path tracing with terminating the path
after k scatterings (dashed lines) using varying k values and com-
puted their L2 error (plotted as log(1 + y) for error y). Note that
the graphs do not converge to zero, because there is Monte Carlo
noise in both images being compared. . . . . . . . . . . . . . . . . 107

6.12 2D slices of flux fields in non-empty voxels computed with path-
tracing (top) and MFT (bottom). . . . . . . . . . . . . . . . . . . . 109

6.13 Images rendered with (a) standard path tracing in 1.3 hours; (b)
MFT in 12 minutes (with 10M particles traced); (c) volume pho-
ton mapping in 20 minutes (with 100M photons stored); (d) vol-
ume photon mapping in 1 hour (with a billion photons stored). . 110

6.14 Rendered fabrics in draped configurations: (top) felt; (middle)
twill weave; (bottom) velvet. The left column shows results ren-
dered by our method (MFT). The center column shows two path-
traced results: the left half of each image is rendered with fewer
paths, sampled to achieve similar rendering time, but therefore,
exhibits higher noise; the right half is rendered with the same
number of samples but terminating all paths after 6 scatterings,
showing significant darkening because of the lack of high-order
scatterings. The right column shows path-traced references com-
puted in much longer time. See Table 6.2 for performance num-
bers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.15 Fabrics with two designs (both with 900×1500 blocks) rendered
under two lighting configurations. All results rendered with our
technique use the same set of precomputed transfer matrices. Per-
formance information is in Table 6.2. . . . . . . . . . . . . . . . . 114

6.16 Renderings of materials beyond cloth under different lightings:
(top) finished wood; (bottom) synthetic volume. Please see Ta-
ble 6.2 for more information. . . . . . . . . . . . . . . . . . . . . . 116

xv



7.1 We introduce a new approach utilizing high-order similarity re-
lations, which can be used to accelerate Monte Carlo rendering
of translucent materials. (a) Reference path-traced rendering of
a Corinthian capital made of a translucent material with a com-
plicated phase function. (b) Image rendered with the same algo-
rithm but using a reduced scattering coefficient and an isotropic
phase function: although a 3.6X speedup is obtained, the result-
ing accuracy is poor (see the included relative error visualization
with the color mapping shown above the renderings). (c) Image
rendered using the same reduced scattering coefficient as (b) and
a phase function provided by our method: with a slightly higher
speedup, significantly better accuracy is obtained. (d) Plots of
the phase functions used in (a, b, c). Our theory permits finding
a tabulated function (the orange curve) accurately reproducing
the reference appearance. . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Our pipeline to speedup forward rendering of translucent me-
dia. It takes the original scattering parameters as well as a user-
specified α ∈ (0, 1) and outputs the altered parameters. . . . . . . 123

7.3 Equivalence classes of a 2D parameter space. White dots indi-
cate the reference parameter points: (0.9, 50) for the left plot and
(0.5, 25) for the right. Dashed lines contain all points belonging to
the same equivalence class (defined by the order-1 similarity rela-
tion) as the references. Low-error regions on the error surfaces (in
false color) match the predicted equivalence classes, confirming
the theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Search spaces for an inverse rendering problem: (a) the original
space; (b) the reparameterized space. The plotted region in (a)
maps to the area enclosed by the dashed lines in (b). Using the
original space, the stochastic gradient descent (SGD) algorithm
starting from point S is trapped at point P, which is far from the
real solution T. Using the reparameterized space, the algorithm
is able to find point R that is much closer to the real solution. . . 138

7.5 Images rendered using the real solution (a) as well as solutions
found by executing SGD on the original search space (b) and the
reparameterized one (c). Visualizations of per-pixel relative error
(using the color mapping in Figure 7.1) are included in (b, c). The
images in the top row are used during the optimization process,
and those in the bottom with a novel lighting are for validation.
The solution found using the reparameterized space shown in (c)
leads to better results in both configurations. . . . . . . . . . . . . 141

7.6 The rendering quality scores (evaluated using the HDR-VDP-2
metric) and the execution times when changing the value of α.
Data points on the purple curves marked with ‘b’, ‘c’, and ‘d’
respectively correspond to renderings in Figure 7.7-bcd. . . . . . 146

xvi



7.7 Renderings of a heterogeneous dragon: (a) ground truth; (b, c,
d) renderings using the altered parameters generated using Al-
gorithm 7.1 with different α values. As in Figure 7.1, the relative
error visualizations are included. . . . . . . . . . . . . . . . . . . . 147

7.8 A complicated phase function and its three altered versions re-
spectively satisfying the order-1, order-4, and order-5 similarity
relations are plotted in (a). Renderings of a homogeneous dragon
(using the plotted phase functions) under side lighting (left) and
front lighting (right) are in (b, c, d, e). The order-1 version yields
poor accuracy; the order-5 version works adequately but not as
well as the order-4 one under both lighting conditions. . . . . . . 152

7.9 2D embeddings: (a) altered parameters satisfying up to order-5
similarity relations can well maintain the structure of the orig-
inal embedding; (b) satisfying only the order-1 relation causes
the projections to collapse to a 1D line. The dashed lines in (a,
b) connect the projections of images rendered with the original
and the altered parameters. The remaining columns show ren-
derings of two phase functions (marked with A and B) which
have similar first moments: (c) reference renderings, (d, e) im-
ages rendered using altered parameters adhering to higher-order
relations and the order-1 relation, respectively. As demonstrated
in (e), first-order approximations do not have sufficient represen-
tative power to distinguish these phase functions (such as A and
B), causing them to be mapped to similar locations in (b). . . . . 153

7.10 Path-traced renderings with various scene configurations.
Columns (a, b) contain images rendered using the original and
the altered parameters with the same number of sample paths
per pixel. Column (c) uses the same scene configuration as (b)
and shows images rendered in similar time with both parameters
(see the insets to assess noise). The relative error maps (using the
color scheme in Figure 7.1) are included in (a2, b2). . . . . . . . . 154

A.1 Rendered images used to create the orange curve in Figure 7.6.
The relative error maps (using the color mapping shown at the
top) are included. Note that the error decreases with increasing α. 168

A.2 Rendered images corresponding to the purple curve in Fig-
ure 7.6. The relative error visualizations use the same color map-
ping as Figure A.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.3 Two examples of overfitting. In both examples, the altered pa-
rameters satisfying the order-3 similarity relation overfit. . . . . . 170

xvii



CHAPTER 1

INTRODUCTION

Fabrics are important to our lives: they are used to create many everyday es-

sentials including clothing as well as functional cloth such as curtains, tablecloth,

and bedsheets (Figure 1.1). Acquiring, modeling, and computationally repro-

ducing the appearance of fabrics, therefore, has been an active research area in

computer graphics for decades. These techniques can lead to applications in

many fields such as

• Virtual prototyping: textile designers can preview the appearance of their

new designs before physically constructing them (on looms). This allows

one to quickly explore many possible designs without investing time and

money on building physical prototypes.

• Retail: with accurate predictions of fabric deformation and appearance,

virtual dressing rooms can be built. By providing their 3D body scans, shop-

pers can try out clothes virtually. This is particularly useful for online

shopping where physical samples are not available to shoppers.

• Entertainment: people can experience highly realistic fabrics in CG movies

and video games.

Clothing Window Curtain Tablecloth Bedsheets

Figure 1.1: Fabrics in our everyday lives.
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(a) (b) (c)

Figure 1.2: Close-up photographs of three kinds of fabrics: (a) silk satin; (b)
denim; (c) velvet.

Unfortunately, accurately modeling and reproducing a fabric’s appearance

in the virtual world remains very challenging. First, the appearances of differ-

ent kinds of fabrics vary greatly. Silk satin, for example, normally looks light

weight, smooth, and shiny (Figure 1.2a); denims are much more diffuse and

strongly textured (Figure 1.2b); velvet, on the other hand, appears heavier with

characteristic grazing-angle highlights (Figure 1.2c). It is difficult to capture all

these varying appearances with one universal model. Second, many thick fab-

rics, such as velvet and felt, contain complicated yet visible 3D geometries that

cannot be fully described by commonly used surface-based reflectance models.

Furthermore, such geometry in real fabrics usually contains naturally arising ir-

regularities that are challenging to model analytically or procedurally but crucial

to the result’s realism.

In this dissertation, we focus on two major problems: the automated creation

and efficient rendering of fabric appearance models.

Model Creation. Surface-based reflectance models are widely used in com-

puter graphics. They model light-material interaction as light bounding off the

material’s surface. Unfortunately, these models cannot accurately capture the
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detailed geometries of fabrics which contribute significantly to their appearance.

We, therefore, need to model fabrics as actual 3D volumes. Recent advances in ra-

diative transfer theory [43] and fabric appearance modeling [107] have led to so-

phisticated volumetric models that are capable of capturing a fabric’s fiber-level

details. These models have been very successful in reproducing the detailed

fiber-level geometry of fabrics. However, it remains difficult to create these

complicated models in an automated manner. Existing methods often require

manually writing down equations or programs to describe the 3D arrangement

of yarns or fibers for each type of fabric. This process requires much human

effort and is time consuming. Further, the resulting models look unrealistically

“perfect” because they lack visually important features like naturally occurring

irregularities. In this thesis, we develop fundamentally new ways to build highly

realistic volumetric models for fabrics while requiring minimal user input.

Rendering Algorithms. Although volumetric models offer great representa-

tive power, rendering them requires a massive, sometimes even impractical,

amount of computation. This is because for volumetric models, light can travel

inside the material and scatter multiple times before getting absorbed or leaving

the material volume. Simulating all these subsurface scattering events can be

very expensive. We introduce new algorithms to efficiently render volumetric

fabric models, greatly improving their practical usefulness.
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Photograph
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with micron-resolution

Micro CT scan

+
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+
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plar database

...

User-specified design
(weave pattern)

Appearance model with user-specified design
(Chapter 6 shows how to render it efficiently)

Photograph of real fabric

Chapter 4

Chapter 5

≈Match

CT image processing
Appearance matching

Synthesis

Figure 1.3: The main pipeline of our technique presented in this dissertation.
(a) We present a brand new method (Chapter 4) that automatically builds micron-
resolution fabric appearance models by combining photographs and micro com-
puted tomography (CT) scans of real cloth samples. (b) Using fabric models
with elementary patterns, our method can synthesize highly complicated mod-
els with user-specified designs (Chapter 5). (c) The renderings (Chapter 6) of
our models match physically constructed samples very well, and can be used to
predict the appearance of fabric designs.
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1.1 Contributions and outline

In this thesis, we present a family of fundamentally new approaches to model

and render fabrics. Our end-to-end pipeline (Figure 1.3) spans the full range

from material appearance modeling and representation to physically based ren-

dering. The micron-resolution models built by our pipeline can produce ren-

dered images matching photographs of real fabric samples with very good accu-

racy, making our approach particularly useful for virtual prototyping of textile

designs.

This section summarizes our four major technical contributions and provides

an outline for the rest of this thesis.

Contribution 1. Our first contribution (Chapter 4)

is a new approach for acquiring volume models,

based on density data from X-ray micro CT scans1

and appearance data from photographs under un-

controlled illumination. To model a material, a CT

scan is made, yielding a scalar density volume. This 3D data has micron reso-

lution details about the structure of cloth but lacks all optical information. So

we combine this density data with a reference photograph of the cloth sample

to infer its optical properties. We show that this approach can easily produce

volume appearance models with extreme detail, and at larger scales the distinc-

tive textures and highlights of a range of very different fabrics like satin and

velvet emerge automatically — all based simply on having accurate mesoscale

geometry.

1Micro CT scans can readily be ordered from a number of facilities at the cost of a couple hun-
dred dollars per sample. With the development of CT technology, such cost has been decreasing.
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Contribution 2. To date, micro CT scanners can

only measure samples up to 0.5 × 0.5 cm2 in size

(while maintaining micron-resolution). Unfortu-

nately, many fabrics have designs far beyond this

extent. Our second contribution (Chapter 5) is a vol-

umetric synthesis framework overcoming this obstacle. This approach starts

with user-specified fabric designs and produces models that correctly capture

the yarn-level structural details of cloth. We create a small database of volu-

metric exemplars using our previous approach. To build an output model, our

method synthesizes a new volume by copying data from the exemplars to match

a weave pattern that specifies the desired output structure. Our results demon-

strate that our approach generalizes well to complex designs and can produce

highly realistic results at both large and small scales.

Contribution 3. Fabric models synthesized by our

technique have offered a new level of realism. How-

ever, rendering these highly detailed models is very

expensive. Our third contribution (Chapter 6) is a

precomputation based approach that accelerates the

rendering process by an order of magnitude, significantly improving the practi-

cal usefulness of our fabric models. The approach precomputes light transport

for all basic building blocks in an exemplar database. This single precomputa-

tion can then be reused to speed up the rendering of any volume synthesized

using this database. At render time, when those building blocks are tiled to

produce a high-resolution volume, we accurately compute low-order scattering,

and use a novel modular flux transfer algorithm to approximate higher-order
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scattering (which usually takes the majority of computation).

Contribution 4. Our fourth contribution (Chap-

ter 7) is about radiative transfer theory, the the-

oretical foundation for simulating light transport

within translucent media (including fabrics). We

introduce similarity theory, which originates in ap-

plied physics, to computer graphics. This theory introduces a set of equivalence

relations over material parameters such that those belonging to one equivalence

class yield identical appearances (when the radiance field is band-limited in the

angular domain). We then introduce practical algorithms to utilize this theory

in its most general form. Our technique can benefit both forward and inverse

rendering of translucent media.

The rest of this dissertation is organized as follows.

• Chapter 2 overviews background on rendering and fabric structures.

• Chapter 3 discusses prior work on fabric appearance modeling and physi-

cally based rendering of translucent materials.

• Chapter 4 introduces our new method for using micro CT scans combined

with a photograph to construct micron-resolution fabric models.

• Chapter 5 describes our volumetric synthesis algorithm for producing com-

plex models with user-specified designs.

• Chapter 6 presents our precomputaton based algorithm that accelerates

the rendering of our detailed fabric models.

• Chapter 7 provides a complete exposition of similarity theory and intro-

duces practical algorithms to utilize it with full generality.
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• Chapter 8 presents our conclusion and suggestions for future research

directions.

The techniques described in this thesis were presented at multiple ACM

SIGGRAPH conferences [111, 112, 110, 113] and have been used by textile re-

searchers at Rhode Island School of Design to build a textile visualization sys-

tem for better design efficiency. In the future, these methods can form a building

block to create high-quality appearance models for materials beyond cloth. The

challenge remains to develop underlying light transport models with sufficient

generality and accuracy, as well as to define basic building blocks of general ma-

terials and to find more powerful synthesis algorithms that merge such blocks

into normal-sized objects.
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CHAPTER 2

BACKGROUND

This chapter reviews relevant material and introduces important terminology

that will be used extensively in the rest of this dissertation.

Section 2.1 presents background on physically based rendering of scattering

(translucent) media. Section 2.2 describes the geometry and creation process of

cloth, which provide important insights for modeling fabric appearance. Most

materials covered in this chapter is high-level. For more in-depth discussions,

please refer to the related work cited in the following sections.

2.1 Rendering basics

The main goal of physically based rendering is to synthesize images that accu-

rately represent the appearance of the objects in a fully described scene. More

precisely, the rendered image captures all light received by a virtual camera’s

image sensor. The scene description includes a complete specification of ge-

ometries and material properties of the objects as well as lighting and camera

configurations. The light may arrive at the image sensor directly, or indirectly

through surface reflections/refractions and volume scatterings.

2.1.1 The physics of light transport

The physical laws governing light transport in a scene exist in a hierarchy of in-

creasing approximations. Quantum optics explains the dual wave-particle nature

of light and is the most accurate model up-to-date. Geometric optics, on the other

hand, is the simplest model. This model focuses on situations where the scale
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of objects is much larger than the wavelength of light, so that physical effects

such as diffraction and interference are negligible. This is generally the case

for computer graphics applications. Thus, the geometric optics model is used

virtually exclusively in physically based rendering.

In particular, geometric optics assume the following on the behavior of light:

• Light travels in straight lines in vacuum and is not affected by external

factors such as gravity fields (i.e., no “gravitational lensing”).

• Light travels instantaneously through any medium.

• Light is incoherent and unpolarized.

In this dissertation, we also rely on these assumptions. Since we treat fabrics as

translucent media, the rest of this section briefly reviews general theories and

algorithms on rendering this type of materials.

2.1.2 Radiative transfer

Under the geometric optics model, when light travels inside a medium, it inter-

acts with the material through absorption and scattering. These normally occur

due to interactions between photons and optically active contents of the medium,

such as cloth fibers for fabrics and water droplets for fog and clouds. However, a

normal-sized object usually contains a massive number of such contents, making

it impractical to consider each of them individually.

The radiative transfer framework [7] assumes the medium to be random and de-

scribes light propagation based on its statistical interpretation. In this framework,

a photon travels along a straight line for a certain distance, which is determined
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Figure 2.1: Physical interpretations for the different terms in the radiative
transfer equation.

by the optical density of that path, and then either gets absorbed (and disappear)

or scattered into a new direction. These interactions are described mathemat-

ically through the radiative transfer equation (RTE). This equation, in the form

usually used in computer graphics, is

(ω · ∇)L(x,ω)

=− σt(x)L(x,ω) + σs(x)

∫
S2
f(x,ω′ → ω)L(x,ω′) dω′ +Q(x,ω)

(2.1)

which needs to hold at every location x inside the medium volume. In this equa-

tion, L is the quantity radiance. Given a point x and direction ω, the quantity

L(x,ω) describes the amount of light passing through x in direction ω.1 Other

terms in (2.1) include: σs and σt, the scattering and extinction (or attenuation)

coefficients; f , the phase function; and Q, the volume source term representing emit-

ted radiance. In addition, σa := σt − σs and α := σs/σt are usually called the

absorption coefficient and the single-scattering albedo, respectively.

Figure 2.1 illustrates the physical interpretations of the three terms on the

RHS of (2.1). The first of these three, −σt(x)L(x,ω), accounts for the radiance

loss due to photons colliding with the medium contents (such as water droplets

or cloth fibers). When such a collision happens, a photon can be either ab-

sorbed, or scattered into another direction (called out-scattering) and no longer

contributes to L(x,ω).
1Please refer to [82, 95] for a thorough review on radiance and other related quantities.
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Figure 2.2: Volume rendering equation: evaluation of L(x,ω) through integra-
tion over the dashed line segment.

The second term on the RHS of (2.1), σs(x)
∫
S2 f(x,ω′ → ω)L(x,ω′) dω′, cap-

tures photons which travel passing x along other directions and then are scat-

tered into direction ω (called in-scattering). This term convolves the directional

radiance and the phase function (at location x) over the unit sphere S2 to obtain

the total radiance that needs to be added to L(x,ω). The integration is done

using the solid angle measure. The phase function f(ω′ → ω), as a function of

ω, is a probability distribution over S2 that expresses the chance that a photon

traveling along ω′ will be redirected into ω.

The last term in (2.1), Q(x,ω), specifies the amount of illumination emitted

by the medium itself.

As a whole, the RTE (2.1) describes that the directional derivative of L(x,ω)

along ω is determined by the negative contribution from extinction plus the

positive one from in-scattering and self-emission.

To evaluate L(x,ω) at some location x interior to a medium, we can integrate

both sides of the RTE (2.1) for a line segment of length s with endpoints x and

y := x− sω (as shown in Figure 2.2), yielding the volume rendering equation:

L(x,ω) =

∫ x

y

τ(x′,x)

(
Q(x′,ω) + σs(x

′)

∫
S2
f(x′,ω′ → ω)L(x′,ω′) dω′

)
dx′

+ τ(y,x)L(y,ω) (2.2)
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where

τ(u,v) := exp

(
−
∫ v

u

σt(x
′) dx′

)
captures the transmittance between u and v.

2.1.3 Monte Carlo integration

Due to its complexity, general analytic solutions to the volume rendering equa-

tion (2.2) do not exist. In physically based rendering, Monte Carlo methods are

usually used to compute (2.2) numerically.

The basic idea of Monte Carlo integration is fairly simple. Consider a real-

valued function g(X). We would like to compute the integral of g over some

domain Ω:

I :=

∫
Ω

g(t) dt.

Let X to be a continuous random variable over Ω with probability density pX .

Assume pX to be positive everywhere g is non-zero. Then, it is easy to verify that

EX
[
g(t)

pX(t)

]
= I.

Let x1, x2, . . . , xN be N independent realizations of X and

〈I〉 :=
1

N

N∑
i=1

g(xi)

pX(xi)
.

The strong law of large numbers guarantees that 〈I〉 converges to I almost surely

when N →∞. Thus, 〈I〉 is called an estimator of I .

Given the function g, the choice of pX significantly affects the convergence

rate of the estimator. Assume g is nonnegative, a perfect pX is proportional to g

(assuming g is nonnegative):

pX(x) =
g(x)∫

Ω
g(t) dt

. (2.3)
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Figure 2.3: Volume path tracing. Given a location x and a direction ω: (a)
new position x1 is first sampled along (x,−ω); (b) new direction ω1 is drawn
according to the phase function f at x1.

In this case, the estimator will have zero variance. But (2.3) requires knowing

I in the first place. In practice, a good sampling distribution should match the

shape of g as closely as possible.

A main advantage of Monte Carlo integration is its conceptual simplicity: it

does not require the function g to have any simple analytical form. Comparing

to other (deterministic) numerical integration methods, such as Simpson’s rule,

the Monte Carlo method converges more slowly (at a rate of N−1/2) but scales to

high dimensional problems more easily.

2.1.4 Volume path tracing

Monte Carlo integration can be used to evaluate (2.2) through volume path tracing.

In this subsection, we describe a unidirectional version of this method.

Assume that the radiance is known everywhere except for the interior of the

medium volume. In order to evaluate L(x,ω) for some given location x (within

a medium) and direction ω, one needs to first compute the double integral in
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Algorithm 2.1 Pseudocode for the volume path tracing algorithm.
1: function C O M P U T E R A D I A N C E(x, ω)
2: Find y by tracing a ray from x in direction −ω
3: Draw d1 ∈ R+ from probability density (2.6)
4: if d1 < ‖x− y‖2 then
5: x1 ← x− d1ω
6: Sample ω1 ∈ S2 according to (2.7)
7: return (Q(x1,ω) + σs(x1) · C O M P U T E R A D I A N C E(x1,ω1))/σt(x1)
8: else
9: return L(y,ω)

10: end if
11: end function

(2.2). Using Monte Carlo integration, this boils down to evaluating

Ed1
[
τ(x1,x)

p1(d1)

(
Q(x1,ω) + σs(x1)

∫
S2
f(x1,ω

′ → ω)L(x1,ω
′) dω′

)]
(2.4)

where x1 := x − d1ω and d1 is randomly sampled from probability density p1

(Figure 2.3-a). Since (2.4) contains another integral, an extra Monte Carlo step

needs to be applied, yielding

Ed1
[
τ(x1,x)

p1(d1)

(
Q(x1,ω) + σs(x1) Eω1

[
f(x1,ω1 → ω)

q1(ω1; x1,ω)
L(x1,ω1)

])]
(2.5)

where ω1 is sampled from q1 given x1 and ω (Figure 2.3-b). Finally, L(x1,ω1) is

computed recursively.

To implement (2.5), one needs to pick probability density functions p1 and q1.

In practice, it is common to use

p1(d) = σt(x− dω) τ(x,x− dω), (2.6)

q1(ω′; x1,ω) = f(x1,ω
′ → ω) (2.7)

which leads to significant simplification of (2.5):

Ed1
[
Q(x1,ω) + σs(x1) Eω1 [L(x1,ω1)]

σt(x1)

]
. (2.8)
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Figure 2.4: Renderings of (from left to right): soaps, olive oil, blue curacao, and
reduced fat milk created using volume path tracing [30].

Given (2.6), it is easy to verify that the probability for d1 to be greater than

the distance between x and y, say s, exactly equals τ(x,y). Thus, to account for

the second term on the RHS of (2.2), the algorithm only needs to return L(y,ω)

when d1 ≥ s.

The entire flow of this algorithm is summarized in Algorithm 2.1. To im-

plement line 3 for heterogeneous media, techniques such as Woodcock track-

ing [103, 109] can be applied.

During the recursive execution of Algorithm 2.1, a light path x,x1,x2, . . . is

constructed. The average contribution of N such paths is an unbiased estimator

of L(x,ω).

Multiple techniques can be used to improve the convergence rate of the

volume path tracing algorithm. Next event estimation, for example, splits the

in-scattered radiance into single-scattered and multiple-scattered components and

evaluates the former by sampling the light source and the latter by sampling the

phase function. Multiple importance sampling (MIS) combines several sampling
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Isotropic Anisotropic

Figure 2.5: Zoomed renderings of a scarf represented with isotropic (left) and
anisotropic (right) media [43]. Accounting for anisotropy leads to more realistic
highlights and color variations.

methods to further improve the performance of the estimator.

The main strength of path tracing is its unbiasedness: by increasing N , the

estimated value always converges to the correct solution. For a detailed and

more complete description on path tracing and its many variants with more

sophisticated sampling strategies, such as bidirectional path tracing (BDPT) and

Metropolis light transport (MLT), please see [95, 41].

In this dissertation, we use volume path tracing (with MSI) to generate all

the rendered images in Chapters 4, 5, 6 and 7.

2.1.5 Anisotropic media

Recently, Jakob et al. [43] extended the radiative transfer framework described in

Section 2.1.2 to better handle anisotropic media containing oriented non-spherical

content, such as fabrics (see Figure 2.5). In this model, the absorption, scattering

and extinction coefficients become functions of both location x and direction ω,

and the RTE (2.1) is generalized to an anisotropic version:

(ω · ∇)L(ω) = −σt(ω)L(ω) + σs(ω)

∫
S2
f(ω′ → ω)L(ω′) dω′ +Q(ω) (2.9)
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where the spatial dependencies are dropped for better readability. Fortunately,

the volume path tracing algorithm described in Section 2.1.4 generalizes natu-

rally to solve (2.9).

In this thesis, we model fabrics as anisotropic media. To provide the data re-

quired by this powerful formulation, we present a piece of fabric as a 3D volume

in which σt(x,ω), σs(x,ω), and f(x,ω′ → ω) are specified for all locations x and

all directions ω,ω′. Note that, to build such a volumetric model at fiber resolu-

tion, the parameters have to be provided at billions or even trillions of densely

sampled locations. Automated creation of these models, therefore, is necessary

yet nontrivial. In Chapters 4 and 5, we introduce an end-to-end pipeline that

builds volumetric fabric models at micron-resolution.

2.2 Fabrics as a glance

Understanding the underlying geometry of real fabrics can provide useful in-

sights for modeling their appearance. The discussion in this section serve as a

general introduction to fabrics and weaving, and is drawn from [51].

Yarns

2 Ply 3 Ply 4 PlyFabrics are composed of yarns, which themselves

are produced by twisting natural (e.g., silk, cot-

ton) or artificial (e.g., polyester) fibers to form long

strands. Yarns can also contain multiple plies, where

each ply is a single group of twisted fibers (see the

figure to the right). All these factors have significant

impact on the appearance of a yarn.

Fabrics can generally be divided into three categories: felt, knitted, and woven.
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Figure 2.6: Yarn structures of a woven and a knitting pattern [51].

Felts are built by pressing together individual fibers, forming a disorganized

and structurally stable layer of fibers. Knitted and woven fabrics, on the other

hand, contain regular and repeated patterns.

Woven fabrics (which are the main focus in Section 5) are formed by interlac-

ing two sets of yarns, called warps and wefts. During the weaving process, warp

yarns are spun onto a loom, and weft yarns are inserted from a perpendicular

direction. At each crossing of a warp and a weft yarn, one of them goes on top of

the other. The specification of this configuration is called the weave pattern (see

Figure 2.6-a). Although weaving may seem simple in principle, depending on

the mechanical properties of the yarns and the loom, fabrics with greatly varying

structures and appearances can be created.

Knitted fabric contains a regular set of loops called stitches. Loops from each

row are pulled through those of the previous row. The two primary directions in

a knit are called the course and the wale, with the course traveling in the direction

of a single row of loops and the wale traveling in the direction of the stack of

loops. Figure 2.6-b shows an example knitting pattern. Knitted fabrics are not

the main focus of this thesis although the use of micro CT imaging introduced

in Chapter 4 can be modified to handle this type of material.
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CHAPTER 3

PRIOR WORK

In computer graphics, there has been a large body of work related to mod-

eling and reproducing the appearance of fabrics as well as general translucent

media. This chapter summarizes previous work on light transport theory, fab-

ric appearance modeling, physically based rendering of scattering media, and

example-based synthesis.

3.1 Radiative transfer

Radiative transfer is used in many areas including astrophysics, neutron trans-

port, and computer graphics [7, 40]. Recently, Jakob et al. [43] generalized this

framework to better handle anisotropic volumetric media (including fabrics)

and proposed the “microflake model” for phase functions in such media.

In Chapters 4, 5 and 6, we use this more general anisotropic framework;

Chapter 7, in contrast, focuses on the classical (isotropic) radiative transfer the-

ory.

Similarity theory. Similarity theory was introduced by Wyman et al. [105, 106]

in applied physics. The authors derived a set of relations between two sets of

scattering parameters so that the resulting RTEs have identical solution radi-

ance fields when their directional frequencies are bounded. A highly simplified

order-1 form of this theory is used extensively in diffusion methods and has

been applied to accelerating Monte Carlo simulation of light transport [8, 25].

However, very limited work has been done, in both computer graphics and

applied physics, to utilize such relations at higher orders.
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Inverse volume rendering. Inverse rendering methods solve for the material

properties in a scene given the desired appearance. Multiple methods have been

developed to recover subsurface scattering properties [99, 16, 77, 31]. We show

in Chapter 7 that similarity theory can be helpful for solving the inverse volume

rendering problem.

3.2 Fabric appearance modeling

Fabric reflectance models. Cloth has perennially appeared in graphics as a

source of difficult BRDFs. Westin et al. [102] computed cloth BRDFs by raytrac-

ing mesostructure models. Ashikhmin et al. [5] rendered velvet and satin using

hand-designed microfacet distributions. Adabala et al. [1] proposed a rendering

method for woven cloth based on microfacet theory. Drago and Chiba [20] pro-

posed a method to procedurally model different kinds of woven canvases using

spline surfaces. Multiple elaborate models [39, 88] have been presented based

on the analysis of yarn or fiber directions in a range of woven fabrics. Each of

these methods achieved good appearance relative to the then-current state of the

art, but they are all specially hand-designed models for individual materials or

specific classes. Lu et al. [63] measured and analyzed reflections from velvet, and

Ngan et al. [75] measured some fabrics, including satins, but neither proposed

models suitable for rendering.

Our approach, presented in Chapters 4 and 5, is based on a completely gen-

eral system that only has a volume with fibers as its underlying assumption.

Thus, we have few fundamental limitations on what textile or textile-like ma-

terials can be handled. Further, by importing volumetric detail from the real

world, we can achieve good appearance in closeups, and at silhouettes, edges,
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and corners, where surface models appear unrealistically smooth and flat.

Image-based techniques. Because standard surface-oriented models are inad-

equate for complex thick materials, researchers and practitioners have had to

fall back on image-based rendering methods like Bidirectional Texture Functions

(BTF), which essentially consist of an exhaustive set of photographs of the sur-

face under all possible illumination and viewing directions [13, 26]. Although

BTFs produce realistic results for many otherwise difficult materials, this image-

based approach requires a significant amount of storage, and is often not of high

enough resolution for sharp BRDF features, and generally fails to capture or

predict grazing angles, making silhouettes and edges unrealistic.

Volumetric fabric models. Two prominent early volume appearance models

are Kajiya and Kay’s fur rendering [49], and Perlin and Hoffert’s “hypertex-

ture” [79]. Although it has since become more common to render hair and fur

using discrete curves, their results demonstrate the value of volumetric models

for complex, barely resolved detail. A similar approach is the “Lumislice” repre-

sentation [107, 9] which focused on modeling and rendering knitwear. Magda

and Kriegman [65] describe a method for acquiring volumetric textures which

combine a volumetric normal field, local reflectance functions, and occupancy

information. All these approaches need significant modeling effort.

Cloth structure. The geometry of cloth structure has been studied for

decades [80, 52] by the textile research community. More recently X-ray tomog-

raphy, using synchrotron facilities [92, 32] or the rapidly improving micro CT

scanners [61, 90], has been used to examine the structure of textiles in several
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applications. These studies focus on extracting geometric information related to

the material’s mechanical properties, but have produced some analysis tools [90]

that we use in Chapter 4.

Fabric appearance acquisition. Many techniques have been developed for

acquiring spatially varying BRDFs [67, 100, 27, 17, 28]. In particular, Wang

et al. [100] and Dong et al. [17] both use BRDFs based on tabulated normal

distributions to represent a variety of materials including a Jacquard silk satin.

These models do an excellent job of capturing the spatially varying anisotropy of

the material, but their resolution is limited to that of the photos used for capture.

3.3 Physically based rendering of translucent media

Monte Carlo methods. The solution of the radiative transfer equation (RTE)

by Monte Carlo integration was first introduced to computer graphics by Kajiya

and von Herzen [50]. Since then, volume path tracing and its variants have

frequently been used to render participating media such as clouds or fog [58, 78]

as well as fabrics [43, 111, 112, 110].

In addition, various techniques such as volumetric photon mapping [45, 44]

and many-lights methods [76, 97] have been developed, which offer faster con-

vergence than path tracing methods, but often at the cost of introducing bias in

the results.

Diffusion methods. Diffusion methods replace the RTE with the diffusion

equation (DE) by applying a first-order approximation to directional radiance

[40]. Jensen et al. [47] introduced a dipole model to graphics which provides an
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approximated analytical solution to the DE. This work uses the homogeneous

isotropic assumption, in addition to assuming a semi-infinite flat slab geome-

try. The layered subsurface scattering approach of Donner and Jensen [18] only

handles flat layers. A follow-up work [19] removes the flat slab assumption by

placing multiple-scattering point sources along a light ray through the medium.

D’Eon [15] introduced a more accurate modification of diffusion theory that

works better for highly absorbing materials.

An alternative to approximated analytic methods is to solve the DE by finite

differences [91, 99] or finite elements [2].

Diffusion methods require the resulting radiance field to be smooth, which

is usually violated near material boundaries and in optically thin regions. Con-

sequently, hybrid techniques [60, 19, 34] combine Monte Carlo methods and

diffusion for better accuracy.

Diffusion methods do not easily apply to our fabric models as they are highly

heterogeneous and anisotropic. Solving the DE over these volumes would re-

quire billions of simple finite elements.

Methods approximating higher bounces. Several existing solutions share our

approach (Chapter 6) of splitting out the first few path segments, and then

looking up a radiance approximation. Volumetric photon mapping [46], also

extended to anisotropic scattering from blond hair by Moon and Marschner [70],

approximates radiance by using density estimation after a few Monte Carlo

bounces. The problem with density estimation for rendering high-resolution

microgeometries is that to get enough photons of all necessary orientations and

path lengths, the radius of lookup has to be orders of magnitude larger than the

underlying microgeometry, thus being locally inaccurate. Photon beams and the
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beam radiance estimate [44] can be very useful in optically thin media; however,

the mean free path in cloth is a few microns, so the usable length of a beam

would likely become much smaller in our case.

The follow-up works by Moon et al. [71, 72], and the related hair rendering

approach of Zinke et al. [115], are also based on using approximate radiance

after several path-traced bounces. These methods do not take advantage of the

modularity from repeated structures, and may not be scalable to the complexity

of our volumes. Schroeder et al. [89] render fabrics by replacing actual microge-

ometry for higher bounces by randomly selected and oriented fibers; however,

the required path lengths remain the same, and the evaluation of the model is

also quite expensive.

Precomputed approaches. Modular radiance transfer [62] was introduced for

diffuse indirect illumination for blocked interiors often found in computer

games, and targeted at real-time performance. The key idea is that light needs

to be propagated from a surface to a block boundary, then within blocks, and

finally back to a surface. We take significant inspiration from this approach,

and show how to derive a modular formulation in the domain of high-quality

volume rendering in Chapter 6.

The Lumislice approach [108] precomputes scattering within a yarn of cloth,

and produces convincing results for fabrics with thick yarns, but does not easily

extend to fabrics modeled at the fiber level, or with strong anisotropic highlights.

Premože et al. [84] proposed an approach to compute multiple scattering with

a “light attenuation volume” precomputed for each light source. This method

focuses on thin media like fog and cannot capture highly anisotropic scattering.
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Other methods. Rushmeier and Torrance [87] integrated volume scattering in

thin participating media into a radiosity framework. This technique formulates

light transport using finite elements, related to our approach described in Chap-

ter 6 for a single block, but is not modular and does not scale to high-resolution

volumes since block-level precomputation is impossible. Narasimhan et al. [74]

derived a general formula to solve the RTE. Their formula, however, applies

only to homogeneous participating media and thus cannot be used to solve our

problem. Fattal [23] presented an approach based on the Discrete Ordinates

Method to solve the RTE approximately. This technique is able to render het-

erogeneous materials like marble, but is not efficient enough to handle volumes

with trillions of voxels.

3.4 Example-based synthesis

Example-based texturing. Example-based texture synthesis techniques create

a large output texture using small exemplars. Those algorithms can be per-

formed based on pixels [36, 21, 101, 59] or patches [11, 22, 57, 104] and can also

synthesize solid textures [53]. Some texture synthesis algorithms take additional

constraints [4, 56, 85], but the forms of such constraints are quite different from

those in Chapter 5. Many approaches, including [4], also aim at preserving con-

tinuity across synthesized pixels. But the optimizations are normally performed

locally and do not ensure global continuities.

Synthesizing appearance/geometry. Several approaches synthesize polyhe-

dral meshes [69], voxelized volumes [114], and appearance models [93, 10] onto

arbitrary surfaces. However, all these methods focus on a very different prob-
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lem: extending complex exemplars over a non-trivial domain. The technique

proposed by Zhou et al. [114], in particular, includes a deformation step to solve

a similar problem as the one introduced in Section 5.4.5. Unfortunately, this

method needs to be performed at the voxel level and thus does not scale to the

size of our problem.

Discrete element synthesis. Recently, techniques that fill a volume with a set

of discrete elements have been proposed [38, 64]. Like texture synthesis, these

methods usually do not support constraints, or they take constraints that are

quite different from ours. And as the name suggests, the basic elements in

these methods are “disconnected” from each other, which is not the case in our

problem.
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CHAPTER 4

BUILDING VOLUMETRIC FABRIC MODELS USING MICRO CT

IMAGING

In this chapter, we present the first component of our main pipeline (Fig-

ure 1.3): a fundamentally new approach to automatically build volumetric fabric

models with micron-resolution.

A fabric’s appearance depends heavily on how the component yarns and

fibers are arranged, but such arrangement can be highly complicated and thus

difficult to describe procedurally. We acquire this structural information using

micro CT imaging. Since the CT scans lack optical information, we combine

them with a photograph of the sample to obtain a complete volumetric appear-

ance model. The models created by our method lead to fabric renderings with

unprecedented fidelity. This work originally appeared at ACM SIGGRAPH 2011

[111] and will be published as a research highlight at Communications of the

ACM (CACM).

4.1 Introduction

The appearance of materials like cloth is determined by 3D structure. Volume

rendering has been explored for decades as an approach for rendering such ma-

terials, for which the usual surface-based models are inappropriate [49, 79, 107].

Recent developments [43] have brought enough generality to volume scattering

that we can begin to render fully physically-based volumetric appearance models

for cloth, fur, and other thick, non-surface-like materials. However, a fundamen-

tal problem remains: creating these volumetric models themselves. For surfaces,

texture maps derived from photographs are simple and effective, but volumes

28



Figure 4.1: We build volumetric appearance models of complex materials like
velvet using CT imaging: (left) CT data gives scalar density over a small vol-
ume; (center) we extract fiber orientation (shown in false color) and tile larger
surfaces; and (right) we match appearance parameters to photographs to create
a complete appearance model. Both fine detail and the characteristic highlights
of velvet are reproduced.

are not so easy. Previous work has primarily relied on procedural methods for

modeling volume density, but this has limited generality: significant creative

effort is needed to design special algorithms for each new material. Further,

these models often miss the subtle irregularities that appear in real materials.

This chapter explores an entirely different approach to building volume ap-

pearance models, focusing particularly on cloth. Since cloth’s detailed geometric

structure is so difficult to model well, we use volume imaging to measure struc-

ture directly, then fill in optical properties using a reference photograph. We do

this by solving an inverse problem that statistically matches the texture between

photographs and physically based renderings (which include global illumina-

tion and multiple scattering). We focus on textiles because they exhibit a wide

range of appearance, but share a common basic structure of long, shiny fibers.

Textile rendering is important for many applications, but is challenging because

cloth is structured, causing complicated textures and reflectance functions, yet

irregular, causing difficult-to-model randomness. The thick, fuzzy nature of

cloth makes volume models a good fit, if only there were a general solution for

constructing them.
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Many volume imaging technologies have been developed, including com-

puted tomography (CT), magnetic resonance, ultrasound, and others. But unlike

photographs, the resulting data does not directly relate to the optical appearance

of the material; only to its structure. As a result, volume renderings of these

images are useful for illustrating hidden internal geometry, but not directly for

rendering realistic images. For instance, a micro CT scan of woven cotton cloth

gives a detailed view of the interlaced yarns and their component fibers, show-

ing exactly how the fibers are oriented and how the yarns are positioned, but no

information about how they interact with light: there is no way to tell whether

the fabric is black or white or any color in between.

We show in this chapter that remarkably little additional information is re-

quired to extend CT data to a realistic appearance model. The value of knowing

3D structure is obvious for rendering close-up views where these details are visi-

ble. But equally importantly, the shape and arrangement of fibers in the material

also determines the overall appearance of the material — the shape and qual-

ity of specular highlights, and how the visual texture varies with illumination

and view. When coupled with the right rendering technology, a simple local

model of reflection from fibers automatically predicts the characteristic appear-

ance of very different materials like velvet and satin, simply by knowing the 3D

structure of the material.

The contribution of this work is to show how to enhance the structural infor-

mation from a CT scan of a small sample of fabric by combining it with appear-

ance information from a photograph of the material to construct plausible and

consistent optical properties that produce realistic appearance when rendered

using a physically based volume renderer. We describe our end-to-end volume

appearance modeling pipeline and demonstrate it by acquiring models of cloth
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(c) Appearance Matching(a) Micro CT Images (b) Reconstructed Density Field
and Orientation Field

(d) Rendered Results

Figure 4.2: Our volume appearance modeling pipeline. (a) CT images are
acquired, (b) the density field and orientation field of the volume are created,
and (c) optical parameters of the volumetric model are assigned by matching
statistics of photographs with rendered images. (d) Larger models are rendered
using our acquired volumetric appearance and geometry models.

with very different appearance, ranging from matte to shiny and textured to

smooth, capturing their characteristic highlights, textures, and fuzziness.

4.2 Overview

The goal of our system is to create realistic volumetric appearance models of

cloth. We need to generate a sampled 3D volume that describes the optical

properties of the material at each voxel so that, when rendered with a physically

based rendering system, it realistically reproduces the appearance of real cloth.

Because cloth is made of fibers, we need a volume scattering model that

can handle the anisotropy of fibers; we chose a modified version of the model

proposed by Jakob et al. [43] (detailed in Section 4.3) for this purpose. This model

requires an optical density, an albedo, and two phase function parameters: an

orientation vector and a specular lobe width.

Our technique begins with a micro CT scan of a small area of material, show-

ing detail at the level of individual fibers over a fraction of a square centimeter.

Such scans can readily be ordered at moderate cost (a few hundred US dollars)

from a number of facilities, and suitable desktop CT scanners are becoming avail-
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able. In a sequence of three stages (Figure 4.2) we process and augment this data,

ending with a volume that defines the required scattering model parameters

using density and orientation fields derived from the CT data, plus three global

parameters: the albedo, the lobe width, and a density multiplier that scales the

density field.

The first stage (Section 4.4) processes the density volume to augment it with

orientation information and to remove noise by convolving the data with 3D

oriented filters to detect oriented structures, and thresholding to separate mean-

ingful structure from noise. This stage produces the density and orientation

fields.

This volume can be rendered only after the global optical parameters are

determined. The second stage (Section 4.5) makes use of a single photograph of

the material under known (but not controlled) lighting, and associates optical

properties with the oriented volume from the first stage by matching the texture

of the rendered volume to the texture of the photograph.

The resulting volume model is good for rendering small samples; the third

stage takes this small patch and maps it over a large surface of cloth, using

randomized tiling to replicate the material and shell mapping [83] to warp it.

The resulting renderings (Sections 4.6 and 4.7) show that this unique ap-

proach to appearance modeling, leveraging direct information about mesoscale

geometry, produces excellent appearance from the small scale, where the geom-

etry itself is visible, to the large scale, where the directional scattering properties

naturally emerge from the measured 3D structure. The characteristic appearance

of difficult materials like velvet and satin is predicted by our rather minimal vol-

ume scattering model, even though we use no light scattering measurements
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that could tell these materials apart, because accurate geometric information is

available.

4.3 Fiber scattering model

We model light transport using the anisotropic radiative transfer equation (2.9)

from Jakob et al. [43]. This equation is a generalization of the isotropic RTE

(2.1) that adds support for a directionally varying amount of “interaction” with

a medium. For instance, the directional dependence of σt(ω) is necessary to

model the effect that light traveling parallel to coherently aligned fibers faces

less obstruction than light traveling perpendicular to the fibers.

To specify the problem to be solved, we must choose a compatible scattering

model that will supply internally consistent definitions of σt, σs, and fp. For this

purpose, we use the micro-flake model proposed in the same work. This volume

analogue of microfacet models represents different kinds of volume scattering

interactions using a directional flake distribution D(m) that describes the orienta-

tion m of (unresolved) idealized mirror flakes at every point in space. Similar to

microfacet models, the phase function then involves evaluatingD(m) at the half-

way direction between the incident and outgoing direction. For completeness,

we reproduce the model’s definition below:

σt(ω) = a ρ

∫
S2

|ω ·m|D(m) dm

σs(ω) = ασt(ω)

fp(ω
′ → ω) =

a ρα

4σs(ω)

[
(D(h(ω,−ω′)) +D(−h(ω,−ω′))

]
Here, ρ denotes the particle density, a is the area of a single flake, α is the associ-

ated albedo, and h(ω,ω′) := (ω+ω′)/‖ω+ω′‖. Note that the above expressions

33



45 90 135 180
Θ

0.2
0.4
0.6
0.8
1.0
1.2
1.4
F H Θ L

45 90 135 180
Θ

0.5
1.0
1.5
2.0

F H Θ L

p = 10, γ = 0.290 p = 30, γ = 0.177

45 90 135 180
Θ

1
2
3
4
5

F H Θ L

45 90 135 180
Θ

2
4
6
8

10
12

F H Θ L

p = 150, γ = 0.081 p = 1000, γ = 0.031

Figure 4.3: Comparison between the sinp θ-type distribution with exponent p
(blue) and our Gaussian-type distribution (red) with standard deviation γ.

are simplified by assuming the flakes have albedo independent of the scattering

angle. This reduces our search space considerably and still leads to a model that

can represent scattering interactions with a variety of fibrous materials reason-

ably well.

To simulate scattering from a rough fiber with direction ωf , Jakob et al. pro-

pose the flake distribution D(ω) = c0 sinp(ωf ,ω), where higher values of p corre-

spond to smoother fibers and c0 is a normalization constant. This model leads to

flake normals concentrated near the plane perpendicular to ωf ; the underlying

motivation is to represent the normal directions observed on the original fiber’s

surface, which predominantly point in these directions.

4.3.1 Alternative flake distribution

One serious drawback of the sinp-type distribution is that most integrals over

it do not have a closed form. This is problematic, since it effectively prevents
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the use of the inversion method for generating random samples distributed

according to D. Since our rendering pipeline crucially depends on this ability

(see Section 4.6), we propose an alternative flake distribution that is convenient

to integrate, while capturing the same key feature of the sinp model, namely that

it is primarily concentrated perpendicular to the fiber direction.

We use the following density function, which specifies a truncated Gaussian

centered around the great circle perpendicular to ωf :

D(ω) =
1

(2π)3/2 γ erf
(

1√
2γ

) exp

(
−(ωf · ω)2

2γ2

)

where the standard deviation γ determines the roughness of the fiber and ωf

denotes the fiber direction. The model captures the same qualitative behavior as

the sinp model over a large range of parameter values (Figure 4.3).

To summarize, the parameters required to create renderings are:

• ωf , the local fiber orientation,

• γ, the standard deviation of the flake distribution,

• α, the single scattering albedo of the flakes,

• a and ρ, the area and density of micro-flakes. Their product roughly cor-

responds to the interaction coefficient σt in traditional isotropic volume

rendering, and we therefore set them to a multiple of the processed CT

densities, i.e. aρ(x) := d · CT(x), where d is a constant of proportionality.

Section 4.4 discusses the steps needed to obtain CT(x) and ωf (x). In Section 4.5,

we describe how to find α, γ, and d, and Section 4.6 explains how to use our

scattering model in Monte Carlo rendering.
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filter q(d; ·)
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q ≥ 0

q < 0
f = 0 (fiber) f = 1 (background)
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J has a high value J has a low value
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d2

(a) (b) (c)aligned unaligned

Figure 4.4: Computing function J in 2D: (a) shape of the filter q; (b) when q is
aligned to the fiber; (c) when q is unaligned.

4.4 CT image processing

Micro CT (computed tomography) devices, which use X-ray CT methods to

examine small to microscopic structures, are increasing in availability, and this

imaging modality is suited to a wide range of materials from which a small

sample can be extracted for scanning.

In this section we describe the process of extracting fiber orientation from

the CT density volume using a special fiber-detecting filter. Following this, we

explain the processing steps needed to obtain orientation and density fields

suitable for rendering.

4.4.1 Recovering the orientation field

CT images provide a voxelized density field with no direction information. Since

our optical model requires an orientation for the phase function, it is necessary

to reconstruct an orientation for every non-empty voxel. Our approach uses ori-

ented filters to detect fibers, based on similar filters used by Shinohara et al. [90]
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to locate fibers in CT data. We chose this approach because of its demonstrated

application to fiber detection in CT data, though alternatives [6] are possible.

To detect a fiber with orientation d at location p, Shinohara proposes a cylin-

drically symmetric filter oriented with the axis d, consisting of a difference of

Gaussians in distance from the axis:

q(d; p) := −2 exp(−sr2) + exp(−tr2)

where r = ‖p− (p · d)d‖ is the distance from the filter’s axis and the parameters

s and t (normally s < t) are empirically adjusted based on the size of the fibers

present in the sample (see Figure 4.4).

The raw CT volume is thresholded at a value εd, resulting in a binary volume

f where

f(x) :=


0 CTraw(x) ≥ εd,

1 CTraw(x) < εd.

Then f is convolved with the filter q for each of a fixed set of orientations:

J(x,d) :=
∑
p∈V

q(d; p)f(x + p) (4.1)

where V is a cubic volume of edge length h. For parameter values, refer to

Table 4.1.

As shown in Figure 4.4, the function J reaches a maximum value when d

equals the fiber’s orientation. So the orientation field is computed by finding,

for each voxel x, the d′ that maximizes J(x,d′) and setting ωf (x) = d′. In our

implementation, we pre-compute q on a set of directions {di} picked from a

32×32×6 cubemap. Then for each non-empty voxel x, we set ωf (x) = dj where

j = arg maxi J(x,di).
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Figure 4.5: Computed orientation field for a piece of gabardine with each
direction (x, y, z) mapped to RGB color (|x|, |y|, |z|). Left: without thresholding
on J ; right: with thresholding on J .

4.4.2 Denoising CT images

The CT images usually contain considerable amounts of noise, particularly for

low-density materials like our cloth samples, and removing the noise is critical

for obtaining good quality data for rendering. Since cloth structure is always

oriented, and the noise is generally fairly isotropic, the value of J is useful in

noise removal.

In our system we use two thresholds to remove noise. The first threshold εd

is on the voxel values themselves, and is used to remove faint background noise

that would otherwise cloud the model. This thresholding creates the binary

volume f . The second threshold εJ is on the value of J and is used to remove

isotropic noise that has density values that are too high to remove by the first

threshold. We set

CT(x) :=


CTraw(x) CTraw(x) ≥ εd and J(x,ωf (x)) ≥ εJ ;

0 otherwise.

Figure 4.5 shows the significance of adding this second threshold.
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4.4.3 Data replication

The volume data needs to be replicated for rendering since our samples are very

small (no larger than 0.5× 0.5 cm2). We will explore example-based synthesis in

Chapter 5 which provide sophisticated tools to do this. Here we consider two

simple randomized tiling methods to cover the surfaces with tiles of volume

data drawn from our models without introducing distracting regular structures.

In both methods the surface is simply covered by a rectangular array of tiles

copied from the volume, without continuity at the tile boundaries.

For materials without visible regularity, such as velvet and felt, each tile

on the surface is copied from a rectangular region centered in the volume. To

provide variation in local structure, for each tile this source rectangle is rotated

by a different random angle. For materials with woven structure, like silk and

gabardine, we use a similar approach, but use random translations of the source

tile instead of rotations. The weave pattern in each sample is manually identified

and a rectangular area is marked that contains an integer number of repeats.

Then each (smaller) surface tile is chosen from a subrectangle that contains a

matching section of the weave. The result is a tiling that reproduces the correct

weave pattern and avoids obvious repeating of texture. We then map the tiled

data to arbitrary surfaces using shell mapping [83].

4.5 Appearance matching

Processing the CT data yields the spatially varying density and orientation for

the volume. But the optical appearance parameters of the model remain to be

determined. Since the CT scan does not give us the material’s optical proper-
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ties, we make use of a photograph of the material to compute the appearance

parameters.

To make the problem tractable, we assume that the volume contains the same

material, with differences only in density and orientation. This is appropriate

for fabrics made from a single type of fiber, which encompasses many important

examples. Fabrics containing yarns of different materials are future work. Thus,

the appearance parameters that must be determined are the same across the

whole volume. They are: the standard deviation of the flake distribution γ

(corresponding to fiber roughness), the scattering albedo α (corresponding to

material color), and the density scale d (corresponding to opacity). Figure 4.6-(a)

illustrates the effects of these parameters.

To match the material’s optical properties, we must use photographs of the

sample. One approach is to photograph the same sample that was scanned,

calibrating the camera to the scan and associating pixels in the image with rays

in the volume. This calibration and acquisition is non-trivial; the fine resolution

of the scans poses practical difficulties. Further, we found that this level of detail

is not required to determine the small number of parameter values we seek.

Instead, we assume that the fabric is statistically similar across different patches.

Thus, our approach is to statistically match the texture of rendered images with

a photograph of a different section of the same cloth under uncontrolled but

known lighting.

We now describe the metrics we use to match the optical parameters to the

photograph, and then describe our matching algorithm.
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4.5.1 Metrics for matching

Appearance matching is not a straightforward process of mapping colors from

the photos into the volume, because the volume model describes local scatter-

ing properties, but the appearance is defined by a global volumetric multiple

scattering process. Our approach is to repeatedly render the volume using our

physically based renderer, and adjust the optical parameters to match certain

texture statistics of the rendered images to statistics of the photograph.

We match two simple statistical measures: the mean pixel value and the

standard deviation of pixel values, computed over corresponding regions of a

photograph and a rendering of approximately similar geometry. This approach

effectively matches the image brightness and texture contrast in the matching

region. We tried measures such as the CDF of intensities [36] and skewness

[73], but found that the mean and standard deviation measures were simpler

and robust. Thus, the only information that flows from the photograph to the

volume model is the mean and standard deviation of pixels in a single rectangle.

The appearance matching process involves choosing the geometry, camera

position, lighting, and matching region. These are inherently manual choices,

and we used the principle of choosing a setup that shows the distinctive features

of the cloth’s appearance. For instance, we made sure to use a configuration

where the highlight was visible on the satin. Beyond this we did not take any

special care in arranging the appearance matching inputs, and the results do not

appear to be sensitive to the details.
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Figure 4.6: (a) Renderings of a cylinder tiled with the satin volume, with fixed
albedo and varying lobe width γ and density mlutiplier d. (b) The corresponding
standard deviation of pixel values for the satin sample: sharper lobes provide
shinier appearance and result in greater standard deviation. The role of d is more
complicated.

4.5.2 Optimization procedure

As shown in Figure 4.6, the density multiplier plays a fairly complicated role

with respect to both measures. Given that our forward process, which is essen-

tially Monte Carlo path tracing, is quite expensive, we chose to pre-determine

the density multiplier in our implementation by rendering such a matrix. Fixing

the density multiplier simplifies the inverse problem and leads to a practical

solution. We found that the algorithm is not particularly sensitive to the choice

of density multiplier; our results use two main settings which differ by an order

of magnitude (see Table 4.1).

With a fixed density multiplier, we solve for the values of albedo (α, esti-

mated separately in red, green, and blue) and lobe width (γ, a single scalar

value) using an iterative algorithm. Note that the mean and standard deviation

of pixel values change monotonically with changes in α and γ respectively1.

Thus, a binary search can be used to significantly improve performance as fol-

lows: first, an initial guess of γ is assumed, and we search for the α to match

1This holds as long as γ exceeds a minimum value (γ = 0.01 for all our experiments); below
this value the variance of fiber orientations limits glossiness.
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Appearance Matching Pair Validation Pair

Figure 4.7: Appearance matching results for (from top to bottom) (1) silk, (2)
gabardine, (3) velvet, and (4) felt. Columns (a) and (c) show photographs of the
materials, and (b) and (d) show rendered images. The left two columns form the
appearance matching pair, in which the blue boxes indicate manually selected
regions for performing our matching algorithm. The right two columns, the val-
idation pair, validate our matches qualitatively under different configurations.

the mean pixel value. Then, fixing α, we perform a search for the γ to match

the standard deviation. These iterations are repeated until a match is found. In

practice, this approach converges quickly, usually in 2 or 3 iterations.

Finally, we take another photo under a different setup and render a corre-

sponding image as a qualitative validation (see Section 4.7). Figure 4.7 shows

the appearance matching results for four different materials.
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Material Data Size s t h εd εJ d γ α

Gabardine 992× 1012× 181 1 2 16 0.45 –10 5000 0.1 (0.892, 0.063, 0.048)
Silk 992× 1013× 46 3 4 12 0.4 –6 5000 0.01 (0.699, 0.030, 0.080)
Velvet 992× 1012× 311 3 4 12 0.4 –1 500 0.1 (0.555, 0.040, 0.074)
Felt 992× 1012× 485 1 2 16 0.4 –30 500 0.125 (0.518, 0.915, 0.365)

Table 4.1: Fiber filter and scattering model parameter values for our material
samples: s and t are the shape parameters, and h is the volume size of the
filter (Section 4.4); εd and εJ are the noise thresholds. The optical parameters
include d, the density multiplier, and the parameters found by our appearance
matching algorithm: γ, the standard deviation of the flake distribution, and α,
the single-scattering albedo.

4.6 Rendering

We render all our scenes using a basic Monte Carlo path tracer, which handles

the directionally varying properties of the medium described in Section 4.3. One

important part of this process entails generating samples from the phase function

fp(ω
′ → ω). In this section, we adopt the notation of the integral form of the

RTE, i.e. ω is held fixed, and we are interested in sampling the direction ω′, from

which to gather illumination.

In prior work, [43] used a spherical harmonics representation for this pur-

pose. However, this approach has several undesirable properties. First, a sample

weight is needed to account for the fact that the sampling routine is only approx-

imate, which increases variance. Second, computing the spherical harmonics

coefficients is a time-consuming process, which needs to be repeated for any

change in the model parameters. This is problematic, since our fitting stage ex-

plores many different parameter sets. Most importantly, the spherical harmonics

approach suffers from ringing and therefore cannot handle some of the highly

specular material configurations in our parameter space.

In the following section, we first propose a naı̈ve sampling method, which is
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not directly usable due to its high variance. We then demonstrate how rejection

sampling can be used to turn the naı̈ve method into an exact sampling scheme.

4.6.1 Alternative sampling strategy

In the surface case, importance sampling for microfacet models often takes the

approach of sampling a microfacet normal, then using it to compute an outgoing

direction [96]. Additional factors, such as the Fresnel reflectance and the Jacobian

of the direction mapping must be accounted for in a weight associated with

the sample. If we apply this approach to the micro-flake model, we obtain a

sampling strategy with the following density:

f1(ω′ → ω) =
D(h(ω,−ω′))

2 |ω′ · h(ω,−ω′)|

where the denominator is the aforementioned Jacobian (an extra factor of 2 is

required in comparison to the surface case, since micro-flakes reflect from both

sides). The sample must be assigned the weight:

w1(ω′ → ω) =
fp(ω

′ → ω)

f1(ω′ → ω)
=

aρ

σt(ω)
|ω′ · h(ω,−ω′)| (4.2)

where we have assumed without loss of generality that D(ω) = D(−ω). Equa-

tion 4.2 indicates a fundamental problem of this approach, namely that w1 can

become large when σt(ω) ≈ 0. This becomes a fundamental limitation as specu-

larity increases, particularly when there are many long transport paths (weights

are multiplicative along paths and can build up).

To deal with this problem, we use rejection sampling to derive a sampling

strategy that generates samples exactly according to fp. Since aρ/σt(ω) is an

upper bound on fp/f1, the following algorithm produces samples of the desired

density:
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1: function S A M P L E -fp(ω)

2: loop

3: m← S A M P L E - F L A K E - D I S T R I B U T I O N()

4: Draw ξ ∼ U(0, 1)

5: if ξ < |ω ·m| then

6: return 2(ω ·m)m− ω

7: end if

8: end loop

9: end function

The added cost of rejection sampling is very small — in our example scenes,

only 2-3 iterations were required on average. The approach described in this

section is general and might also be useful to improve sampling techniques that

are traditionally used for microfacet reflectance models.

4.6.2 Sampling the flake distribution

The algorithm above assumes the availability of a routine S A M P L E - F L A K E -

D I S T R I B U T I O N that can draw samples distributed according to D(ω). We

apply the inversion method in spherical coordinates to the distribution described

in Section 4.3, and find that the latitude (θ) component integrates to:

F (θ) :=
1

2

(
1− erf

(
cos θ√

2γ

)/
erf

(
1√
2γ

))
where, F (0) = 0, F (π) = 1, and we have temporarily assumed that ωf = (0, 0, 1)T .

To sample θ, we find F−1(ξ1) numerically using Brent’s method, where ξ1 is

uniformly distributed on [0, 1]. About 10-18 iterations are required to arrive at

machine precision. For the longitude (ϕ) component, we set ϕ = 2πξ2 (where ξ2
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is another uniform variate). To handle general fiber directions, we rely on the

same sampling code and simply apply the appropriate rotations to the incident

and outgoing directions.

4.7 Results

Our results are based on samples of silk satin, velvet, felt, and wool gabardine,

which were sent to the High-Resolution X-ray Computed Tomography Facility

at The University of Texas at Austin. All fabrics were scanned in an XRadia

MicroXCT scanner using 10243 volumes. The silk stain used a voxel size of

2.5 µm, while the others used 5 µm.

As necessary, our initial data cleanup included corrections to equalize density

and contrast between the center and edge of the volume (vignetting). Further,

we straightened the slightly non-planar cloth samples using geometric warping,

by fitting a second-order polynomial p(x, y) to points distributed proportional

to the CT densities and then resampling the whole volume using the mapping

f(x, y, z) = (x, y, z − p(x, y)). We then ran the CT image processing pipeline

(see Section 4.4), with the parameters reported in Table 4.1. Depending on the

thickness of the sample, processing took between 1 and 8 hours on a QSSC-S4R

Intel Server with 4 Xeon X7560 8-core processors and 32 GB of memory.

Our rendering implementation is based on the open source rendering system

Mitsuba [42], which was extended to handle the new micro-flake distribution

(Section 4.3). The rendering itself was done on the Amazon Elastic Compute

Cloud (EC2), where we used between 8 and 32 c1.xlarge instances (each

having 8 cores and 7GB of memory) to jointly render the individual images at a

resolution of 2.6 megapixels. With 32 instances, rendering times range between
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3.7 (velvet) and 7.4 (satin) hours per image.

Figure 4.7 shows results obtained by our appearance matching scheme; the

left two columns, the appearance matching pair, show the image pairs used for

appearance matching (the blue rectangle is used for matching), and the right two

columns, the validation pair, show a different image pair, also with known and

matched lighting, to test how well the model generalizes to other configurations.

The sizes of all samples we used for appearance matching are roughly 10 × 10

cm.

Figure 4.8 shows the resulting models shell-mapped onto draped fabric ge-

ometry and rendered under environment lighting.

The silk satin (charmeuse) has a structure of mainly parallel fibers on the sur-

face, resulting in a strong anisotropic highlight. In Figure 4.7-(1), the appearance

matching pair uses a cylindrically curved piece of material, and the matching

region was chosen to include a highlight to allow the matching process to tune γ

appropriately. Good results are obtained despite the mismatch between the ideal

cylinder in the rendering and the flatter shape of the real material, illustrating

that a casual setup suffices. Using the parameters obtained from this view, the

validation pair shows the fabric rotated 90 degrees and draped over the same

cylinder. At this angle the fabric exhibits almost no highlight; this anisotropic

appearance is correctly predicted by our model.

The satin is shown in a draped configuration in Figure 4.8-(a). No reflectance

model, BRDF, BTF, or other multi-view image data is used for these renderings —

the orientation information in the volume automatically causes the characteristic

appearance of this fabric to emerge when the model is rendered.

For gabardine, a wool twill fabric, the variation in texture with illumination
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direction is an important appearance characteristic. In Figure 4.7-(2), the appear-

ance matching pair is lit with a low-frequency environment map. The validation

pair accurately predicts the texture under a different lighting condition, which

involves a strong luminaire at the top. In the draped configuration in Figure 4.8b,

the volume model captures subtle foreshortening effects and the silhouette ap-

pearance, as well as the subtle variations in texture across the surface. The

appearance at the cut edge gives the proper impression of the thickness of the

fabric (compare to the very thin satin material), which is a perennial difficulty

with surface models.

Velvet, a material with a cut pile (like a carpet), has a visible surface com-

posed of fibers that stick up from the base material. It has a very distinctive

appearance, with a characteristic grazing-angle highlight. Appearance match-

ing for velvet (see Figure 4.7-(3)) was done using a curved configuration and

the same harsh lighting as used for gabardine’s validation, producing distinct

highlights on both sides of the cylinder. The validation pair shows a different,

softer lighting, which results in a less distinct highlight; our model agrees qual-

itatively with the photograph. The appearance of velvet depends on how the

fibers are brushed, and our random tile rotation method produces randomly

brushed velvet. In Figure 4.8-(c), we demonstrate how our model reproduces

the characteristic velvet highlights. Further, the edges and silhouettes convey

the considerable thickness and weight of this material.

Felt is a non-woven textile consisting of a disorganized layer of matted fibers.

The thickness and fuzziness of this material are important appearance attributes

that are generally difficult to model and render. Since felt does not exhibit an

overall specular highlight, we used a flat patch for appearance matching; be-

cause of limited depth of field we limited the matching region to a thin rectangle
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(a1) (a2) (b1) (b2)

Figure 4.9: Renderings obtained by editing the volumetric representation.
(a) The material is flipped using a binary texture map (two lighting conditions
are shown). (b) The gabardine sample is rendered with a blue hue (b1); we
then detect weft fibers based on their orientation and color them white, which
produces a material resembling denim (b2).

where the photograph is in good focus. The illumination conditions for the ap-

pearance matching and the validation are the same as those for the gabardine.

The color and the contrast due to self-shadowing attributes are matched nicely

and generalize well to the second illumination condition. One limitation for this

material is that it has substantial low-frequency content in its texture, which

our small sample area did not capture in the CT imaging, leading to a slightly

more uniform appearance in our tiled material. Figure 4.8-(d) demonstrates the

ability of our volumetric appearance model to capture the material’s thick, fuzzy

appearance.

A 3D, physically based model also allows more meaningful editing than

image-based methods. Figure 4.9 shows renderings created after performing

simple edits to the underlying volume representation. In the top row, we reflect

lookups into the satin volume data across the central plane of the fabric, condi-

tioned on a binary texture map that covers the surface. This edit reveals the back

face of the satin weave, which exhibits softer reflections due to less coherent

fiber directions, much as these weaves are interchanged in jacquard-woven satin.

Two different lighting conditions are shown.

In the bottom row of Figure 4.9, we extend the gabardine model with a spa-
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tially varying albedo value. The albedo is computed as a function of orientation,

so that fibers in the warp and weft are assigned different colors. With blue warp

and white weft a fabric similar to denim is produced, though made of wool

rather than cotton.

Finally, we compare our method to the surface-based BRDF and texture

model introduced by Irawan [39] (Figure 4.10). For these two examples, Irawan

fit his model to BRDF measurements of exactly the same materials we measured.

The renderings for Irawan’s and our methods took roughly 8 and 64 core hours,

respectively.

At the large scale, the BRDFs of the fabrics match reasonably well. Irawan

showed that his model matches the measured BRDFs of these materials to a

similar degree of fidelity, so this confirms that our method predicts large-scale

reflectance from the structure and a single image. For yarn-scale texture, the

two models produce generally similar results, though Irawan’s model is lower

in contrast for the gabardine because it does not account for shadowing. It

also produces a more uniform appearance. At the small scale, as seen in the

insets, and at silhouettes and edges, our detailed volumetric model produces

dramatically more realistic results.

4.8 Conclusion

We have demonstrated a new, multimodal approach to making realistic volume

models of cloth that capture both the 3D structure evident in close-up renderings

and the BRDF evident in farther-away views. Unlike previous methods for

capturing cloth appearance using BTFs, our method explicitly models the 3D

structure of the material and, interestingly, is able to capture the directional
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Figure 4.10: Silk satin (1) and gabardine (2) rendered with Irawan’s surface-
based representation (a) and with our model (b).

reflectance of the material automatically because of this structure.

Our modeling approach uses CT imaging where it is strongest, in measuring

3D structure, and it uses photographs where they are strongest, in measuring

color and texture. By matching texture statistics we merge these two sources of

information, resulting in a volume model that can produce both close-up views

with rich detail of fuzz and fiber structure and the characteristic BRDFs (high-

lights) of these materials that emerge naturally from rendering the measured

structure. No BRDF measurements are made, and only a few parameters are

adjusted in the optical model. The appearance of the cloth is created by a simple

anisotropic phase function model together with the occlusion and orientation

information extracted from the volume. This chapter shows that since geometric

structure is what creates the complex appearance of textiles, once we acquire the

structure, we are most of the way to modeling the appearance.

Aside from its implications regarding how material appearance can be mod-
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eled from structure, this is also quite a practical method for appearance modeling.

All that is required to model a material is a CT scan, which can be obtained at

reasonable cost from a number of facilities (or in the future from the rapidly

improving technology of desktop CT scanning) and a few photographs under

known illumination, which takes only a few minutes with a camera and a mirror

sphere. The resulting models are volumetric in nature, and physically based,

which makes them easier to edit than image-based data. It is easy to adjust color,

glossiness, opacity, and material thickness by scaling parameters of the volume

geometry; and a range of more fundamental changes to the material’s structure

can be made by editing the volume data.

This work has demonstrated the usefulness of the CT modeling approach for

textiles, but the approach does have some limitations. Particularly, it requires

that changes in optical properties correlate with changes in density, and this

requirement could limit the kinds of materials that can be captured using this

imaging modality. Further, the scanner can only image small samples, less than

a centimeter across, at the resolution needed to produce clear fiber orientation

maps. Thick materials that do not fit fully in the volume (e.g., materials with

very long flyaway fibers) cannot be handled well. Some unusual materials, such

as metallic fibers, may be problematic for CT because of limited dynamic range.

Also, texture content at larger scales will be missed. These problems will de-

crease as CT scanners improve in resolution and dynamic range. CT is very well

suited to textiles, and it remains to be seen what other materials it performs well

for, and how other volume imaging methods work in this technique. Further,

materials with differently colored yarns cannot be currently captured by our

method.

There are many areas of future work. This work was done using extremely
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small samples. With larger ones, which should be possible as CT technology

improves and becomes more accessible, better texture could be produced.

To improve accuracy, more photographs under varying conditions can be

used, allowing more parameters (for instance, more complex phase functions)

to be fit. One possibility is to replace our optimization algorithm (which per-

forms the binary search) with stochastic gradient descent methods (such as the

one introduced by Gkioulekas et al. [31]) for solving a more general inverse

volume rendering problem. Unlike [31] which focuses on isotropic media, we

will need to derive unbiased gradient estimations with respect to the micro-flake

parameters.

Ultimately, this method can be extended to work for a wide range of types of

materials whose appearance is difficult to capture using surface models.

55



CHAPTER 5

STRUCTURE-AWARE SYNTHESIS FOR PREDICTIVE WOVEN FABRIC

APPEARANCE

This chapter describes the second component of our main pipeline (Fig-

ure 1.3): a structure-aware synthesis framework that creates micron-resolution

fabric models with complicated, user-specified designs.

Our approach starts with creating a database of example fabric models with

elementary patterns. Given a new design specified by the user, our method

creates a new volume by copying data from the exemplars at each yarn crossing.

The resulting volumetric models can produce highly realistic renderings at both

large and small scales. This work was originally published at ACM SIGGRAPH

2012 [112] and has been used by textile designers at Rhode Island School of

Design to build a visualization system that greatly accelerates the design pro-

cess. Figure 5.1-c has been selected as the front cover of the SIGGRAPH 2012

conference proceedings.

5.1 Introduction

Woven fabrics are common in everyday life and display highly varied appear-

ance, with very fine detail and subtle directional effects that are created by the

interplay of geometric structure with fiber properties. Capturing these effects in

predictive renderings for arbitrary woven fabrics is a major challenge.

Realistic cloth is important for graphics applications from entertainment to

apparel rendering, and it is also important in textile design. Textile designers

use software such as Pointcarré [81] to design weave patterns for fabrics, and

then drive industrial looms using the output. However, these packages do not
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(a) (b) (c) (d)

Figure 5.1: We synthesize volumetric appearance models of fabrics with com-
plex designs using a small set of exemplars: (a) density information of exem-
plars obtained using micro CT imaging; (b) fabric designs specified by weave
patterns; (c) rendered results using synthesized volume data; (d) insets showing
details: see, for example, blue yarns (top inset) hidden beneath the gray ones
that are visible through the gaps.

provide realistic previsualization of the design before fabrication, thus forcing

designers to fabricate “in the dark”. Since loom time can be expensive and

difficult to schedule, refining a design requires slow and costly iteration. By pro-

viding the ability to predictively preview the appearance of fabric designs before

they are woven, we can minimize the need for test weaving, saving considerable

time, raw materials, and cost.

Volume modeling and rendering techniques [48, 79] have recently been quite

successful in capturing the diverse appearance of fabrics [108, 43, 111]. In partic-

ular, the technique presented in Chapter 4 builds volumetric models for fabrics

using yarn and fiber geometry information from micro computed tomography

(CT) imaging and optical information from a photograph. For materials with

simple repeating structure and a single type of yarn, the volume data is tiled to

produce large areas of fabric, with highly realistic results.

The key to this approach is to accurately model the geometric structure of

the surface layer of the cloth, from which the many appearance phenomena of

57



different fabric types emerge automatically. However, this method is limited

to materials containing only a single type of yarn, and it can only reproduce

the exact material that was scanned. But real fabrics are complex—including

intricate weave patterns, large scale designs, and multiple yarn types for warp

and weft, each with its own reflectance; ideally, flexibility to render such fabrics

is desired. Further, in design applications, the real usefulness of rendering comes

from predicting the appearance of new fabrics that have not been scanned.

In this chapter, we present a new technique to create volumetric models of

fabrics with complex, spatially varying structures and to predict the appearance

of specific weave patterns. A small set of exemplars obtained from micro CT

scans of simple fabrics are used to model new fabrics defined by 2D binary im-

ages representing each fabric’s weave structure. Our structure-aware volume

synthesis algorithm efficiently copies regions of the exemplars to assemble a

volumetric model that matches the fabric’s structure, without visible seams or

periodic patterns. An additional edge fixing step is introduced to further im-

prove the quality of the synthesized volumes.

We demonstrate our technique with synthesized results for a range of com-

mon structures that convey very different appearance. In some cases we use real

weave patterns and compare to photographs of samples woven from the same

patterns, and in other cases we use patterns generated to achieve a particular

rendered appearance. This work can have impact on graphics applications in

entertainment, e-commerce and apparel visualization, and textile design.
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(a) (b) (c) (d)

Figure 5.2: Example weave patterns: twill (top two rows), satin (bottom two
rows); (a) weave patterns and the corresponding 2D illustrations where warps
and wefts are respectively drawn in black and green; (b) CT data of fabric sam-
ples with the same weave patterns; (c) colored visualizations of the CT data;
(d) a photograph of our example fabric in which the four examples used in this
figure are marked with blue rectangles.

5.2 Background

Weaving is a process of interlacing two perpendicular sets of yarns, called the

warp and the weft, to form a fabric. During the weaving process, warp yarns are

fixed to the loom while weft yarns are inserted crossways, and different subsets

of warp yarns are raised above or lowered below each inserted weft yarn so
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that the yarns become interlaced and the fabric holds together into a sheet by

friction. In this work, we follow the convention that warps go vertically and

wefts horizontally.

Depending on the pattern in which warps are raised, fabrics with very dif-

ferent appearance and mechanical properties are produced. The pattern is de-

scribed very simply using a binary image called a weave pattern, with the number

of columns and rows equal to the number of warps and wefts in the cloth; a black

pixel means the warp is above the weft at the corresponding yarn crossing, while

white means it is below. Depending on the mechanics of the loom, only certain

kinds of patterns may be achievable, but in the most general case of Jacquard

looms, every yarn crossing is individually controlled by a computer. Figure 5.2

shows four different weave patterns from the twill and satin families that we use

as exemplars.

Twill is one of the most common weave patterns, in which each row is shifted

by one yarn from the previous row. As shown in the top row of Figure 5.2,

fabrics created with twills convey characteristic diagonal lines. Simple twills are

denoted “m/n twill” meaning a warp goes over m wefts, then under n wefts,

then repeats. A twill pattern that repeats every k yarns is called a “k-end twill”

or just “k-twill.” The two 5-twill patterns shown in Figure 5.2 are 2/3 twill and

4/1 twill.

As opposed to twill, satin weaves shift each row by more than one yarn, with

the aim of creating a more distributed pattern that does not call attention to the

repeating structure. Satins build smooth surfaces and can be used for creating

fabrics with glossy appearance. Satins are named in the same way as twills; the

bottom rows of Figure 5.2 show a 2/3 and a 4/1 satin. Much larger satin patterns

are often used with fine yarns when a glossy surface is desired.
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In Jacquard fabrics with many-colored graphic patterns, the variety of avail-

able colors can be increased by using a multi-layer weave, so that some yarns

can be hidden at the back of the cloth in areas where their color is not desired on

the surface. The structures of double- and triple-cloth fabrics can be intricate, but

for our purposes we are primarily interested in the yarns visible on the surface.

Therefore in this work we treat cloth as if it were single-layered, with yarns that

can change color along their length. In reality, of course, yarns do not change

color but rather are substituted with other yarns that were previously hidden on

the back, but the errors induced by this simplification are negligible.

5.3 Overview

The goal of our cloth modeling process is to produce volume models of woven

materials, suitable for realistic close-up renderings, from two inputs: a descrip-

tion of the material to be simulated, and a few examples of similar but simpler

fabrics. Our system accomplishes this in two phases. In the first phase, which

only needs to be done once for a whole class of materials, CT scans of the exam-

ple fabrics are used to build exemplars that contain all the information needed to

synthesize large areas of complex fabrics. In the second phase, which is done

once per material to be simulated, the exemplars are used in a new structure-

aware volumetric texture synthesis method to synthesize a volume model ac-

cording to the colors and weave pattern of the target material.

Exemplar creation phase. The purpose of the exemplar creation phase is to

turn raw volume data into a database that can be used to synthesize volume

models of a range of fabrics that are made from materials similar to the example
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materials, but have different structure. Normally the example materials are a set

of simple weaves made using particular types of yarns.

As input we assume volume data showing the geometric structure of the

input fabric. While other data sources, such as magnetic resonance imaging

(MRI), could be used, here we focus on volume datasets that come from CT

scans. Thus, our input is the raw volume containing density information on

a fine voxel grid covering a small patch of a fabric. High resolution scans are

required to resolve fiber orientation and flyaway fibers, so each scan observes

an area on the order of 5mm across, which, after cropping, typically produces

exemplars with about 6× 9 yarn crossings.

A processing pipeline takes this data and produces output by denoising the

input density data, automatically tracking yarns in the data to detect the yarn

trajectories, segmenting the voxels to match them to the appropriate yarns, and

then automatically detecting the pattern of yarn crossings.

Each exemplar in the resulting database includes a voxel grid (containing

density, fiber orientation, and yarn ID) and a small binary image representing

the weave pattern. Section 5.5 gives details.

Synthesis phase. The input describing a new fabric to be simulated includes

a 2D binary array giving the weave pattern for the whole cloth, and 2D arrays

specifying the type of warp and weft yarn present at each yarn crossing. The

synthesis phase, detailed in Section 5.4, creates an output volume that respects

the input specification while displaying local structure and details that match

the exemplars.

How the fabric specification will be created depends on the application.
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(a) (b) (c) (d)

Figure 5.3: Inputs to our algorithm: (a) shows the weave pattern; (b) and (c)
show warp and weft ID maps encoded in colors, indicating that all but the left-
most warp share the same optical properties while all wefts are identical; (d)
illustrates the visible yarn ID at each crossing.

When predicting the appearance of a new fabric as part of the textile design

process, this description can be extracted directly from the actual design, using

the data that would be sent to the loom to make the fabric. In a graphics context,

the weave and color pattern can be computed from a posterized image by a

very simple process, since the constraints of actual weaving do not need to be

observed, as described in Section 5.4.2.

5.4 Structure-aware synthesis

Given appropriate exemplars, structure-aware synthesis produces a detailed

model of a fabric from a description of the required design.

5.4.1 Input specification

The input to our algorithm (Figure 5.3) consists of three components:

1. A binary image W representing the weave pattern, where each binary

value represents a yarn crossing.
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2. A 2D array specifying the warp and weft types, represented with IDs, for

every yarn crossing.

3. Color and gloss information for each type of yarn.

As discussed in Section 5.2, we model multilayer weaves by allowing a sin-

gle warp or weft to change color along its length. This also provides flexibil-

ity in graphics applications where the cloth need not be manufacturable, be-

cause the color constraints of the actual weaving process can be discarded if

desired. For this reason the yarn color arrays are two-dimensional rather than

one-dimensional. In reality, there are usually no more than ten different kinds of

yarns in a fabric.

5.4.2 Input data creation

The input above can be created in several ways. A textile designer would nor-

mally use design software such as Pointcarré [81] to design a new material, and

the software can simply output the required binary weave pattern and yarn

color information.

For applications where constraints of producing actual cloth are less of a con-

cern, the following simple method mimics the design process. Begin with a pos-

terized image I and a set of q different elementary weave patterns V1, V2, . . . , Vq

(repeated until they match the size of I) associated with warp and weft ID maps.

Note that the set of elementary patterns can be arbitrary and does not need to be

contained in our exemplar database. Let the set of discrete colors in I be P . The

user then assigns a weave pattern to each of the colors by specifying a mapping

p : P 7→ {1, 2, . . . , q}. To produce the patterned cloth, take each pixel from that
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Figure 5.4: Synthesized results using (top) naive algorithm, (middle) greedy
algorithm, (bottom) our approach: the left column shows renderings using syn-
thesized models; the right column shows from which exemplar each block copies
its content (encoded in false colors).

of one of the elementary weave patterns as follows: W (x, y) = Vp(I(x,y))(x, y).

5.4.3 Synthesis at the yarn level: the problem

The goal of our synthesis process is to generate a large volume matching the

given weave pattern. At the voxel level, the problem is to solve for the value

of each voxel of output. Since the total number of voxels can be very large (a

1m×1m×2mm cloth sampled at 5µm resolution has 1.6×1013 voxels), computing

or even storing the solution is costly and must be avoided. At the yarn level, the

algorithm instead considers one pixel in the weave pattern (which represents a

warp-weft yarn crossing) at a time, and “copies” the corresponding volume data,

which we call a block, by referencing a rectangular box in an exemplar volume.
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This is much more tractable, so given the costs involved, we solve the problem

at the yarn level, and then apply a post-process to effectively adjust the data at

the voxel level to get a high quality synthesized result.

The core problem of the yarn-level synthesis process is to locate a block in

the exemplar volumes for each pixel in the weave pattern to copy its volume

contents from. Let A be a weave pattern associated with a volume Ã, and let

Ã(i, j) denote the block in Ã corresponding to pixel A(i, j). Then the yarn-level

synthesis problem can be formulated as follows: given a set of k example weave

patterns {S1, S2, . . . , Sk} associated with k exemplar volumes and a target pat-

tern W , determine an assignment function c : N2 7→ N3 where c(i, j) = (u, x, y)

indicates that W̃ (i, j) copies its data from S̃u(x, y). Note that c can be imple-

mented simply as a 2D array.

One possibility is to randomly copy blocks that have the desired yarn (warp

or weft) on the top, by assigning c(i, j) a random triple (u, x, y) under the con-

straint that W (i, j) = Su(x, y). Unfortunately, this works poorly, as shown in the

top row of Figure 5.4, since there is no consistency across block boundaries. The

shape of the yarn passing through a given block is affected strongly by whether

it passes under or over the next yarn, and for this reason it is critical to ensure

that the binary values of the four neighboring pixels match when selecting an

exemplar block to copy.

Thus our method follows three principles when selecting an exemplar block

for each output block, enforcing them in priority order:

1. Correctness. The correct yarn (warp or weft) must be on top.

2. Consistency. The four neighbors in the desired weave pattern should match

the neighbors in the exemplar’s weave pattern.
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3. Continuity. Choices that copy neighboring blocks in the exemplar into

neighboring blocks in the output are preferred.

Next we define the term consistency. For every element (i, j)→ (u, x, y) of c,

which we call an assignment, consider the four neighbors of W (i, j) and Su(x, y).

If all these neighbors match in binary values, we say the mapping is consistent.

Unfortunately, it is not always possible to find c such that all assignments are

consistent. Thus the problem can be described as an optimization: find an assign-

ment function such that the total number of matches is maximized. Figure 5.5

shows an example where the block in S̃3 maximizes the number of matching

neighbors.

Note that to maximize the total number of matches, the choice for one assign-

ment is independent of that for another. This fact suggests a greedy algorithm:

for each pixel W (i, j), select the triple with the maximum number of matches.

Although this simple algorithm can generate much better results (see the middle

row of Figure 5.4), it does not provide local continuity since the algorithm does

not know how to break a tie when there are multiple candidates with the same

number of matches. This is unfortunately a very common situation over uniform

regions of a fabric.

To tackle this problem, we introduce a “continuity” term as follows. Given an

assignment function c, let the continuity at (i, j) be the total number of immediate

neighbors (i′, j′) satisfying the following conditions: let c(i, j) = (u0, x0, y0) and

c(i′, j′) = (u1, x1, y1), then u0 = u1 and

(x1, y1)− (x0, y0) = (i′, j′)− (i, j).

Our problem is to find an assignment maximizing the total consistency, using

the total continuity to break any ties.
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2 4

Synthesized Volume W̃Input Weave Pattern W

S1 S2 S3 S̃1 S̃2 S̃3

W (i, j)
W̃ (i, j)

Figure 5.5: The block in S̃1 is not a valid candidate since it does not satisfy
the correctness constraint; the blocks in S̃2 and S̃3 satisfy the constraint and
respectively have 2 and 4 matching neighbors.

5.4.4 Synthesis at the yarn level: our algorithm

While matching consistency can be done using a greedy algorithm, maximizing

the total continuity on a 2D grid is in general a very hard combinatorial optimiza-

tion problem. Fortunately, the 1D version of this problem, where continuity is

defined by considering the two immediate neighbors for each yarn crossing, can

be solved efficiently. And our experiments indicate that solving the 1D problem

for every column (along the warps) is a good approximation of the 2D problem

when handling weave patterns.

For convenience, we associate a unique index to each triple (u, x, y) used by

the assignment function c. Beyond this point, we assume that c(i, j) returns a

single integer instead of a triple.

For a column y0 in the weave pattern, let f(i, t) denote the maximal total

continuity for the first i rows in this column under the constraint that c(i, y0) = t.

And f(i, t) is defined only when tmaximizes consistency atW (i, y0). To compute
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f(i, t), we can solve recursive sub-problems over the first (i − 1) rows, namely

computing f(i− 1, t′) for all feasible t′ values, and then pick the best one to form

f(i, t) by computing

f(i, t) = max
t′
{f(i− 1, t′) + gain(t′, t)} (5.1)

where gain(t′, t) captures the 1D continuity and equals 1 if t′ and t come from the

same column of one exemplar volume and t′ lies next to t and 0 otherwise. The

base case of this recursion is f(0, t) = 0 for all t.

Note that the total number of states is polynomial, and this optimization prob-

lem can be solved efficiently using dynamic programming. Figure 5.6 illustrates

the process of computing f(i, t) by enumerating t′ values.

Algorithm complexity. Given a target weave pattern of size M ×N , and k ex-

ample weave patterns each of size m×m, the dynamic programming algorithm

runs in O(km2MN) time. In our experiments, m = 5, k = 8, and M , N can be as

large as several thousands.

Algorithm optimization. Many basic weave patterns are translationally sym-

metric: each column is a translated version of the previous one (with wrapping

around the edges). It therefore suffices to consider just one column, reducing the

time to O(kmMN).

Randomization. The above optimization could result in a loss in variation by

not considering the other m − 1 columns. Further, a side effect of maximizing

local continuity is that it may create periodic patterns. To solve this problem, we

randomly shift each block based on translational symmetries of the correspond-

ing exemplar. And we shift every m̂ × m̂ block by the same amount to avoid
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Exemplar Volumes

i blocks

t1
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t2

Figure 5.6: The dynamic programming process: computing f(i, t0) by enumer-
ating different possible t′ values using Equation 5.1. For example, here we have
gain(t1, t0) = 1 whereas gain(t2, t0) = gain(t3, t0) = 0.

Block 1 Block 2 Block 1 Block 2

h1
h2

Yarn 1 Yarn 2 Yarn 1
Yarn 2

(a) (b)

Figure 5.7: Fixing the edges by moving stacks of voxels.

destroying the continuity obtained by solving the optimization problem. Since

m = 5 in our experiments, we have picked m̂ = 3.

Discussion. The 1D dynamic programming can be also performed along the

weft direction or even alternating between the two directions. In our experi-

ments, these schemes all produced very similar results. This is because the input

weave pattern itself has strong 2D structure, and the 2D neighborhoods greatly

restrict the set of candidate blocks at each yarn crossing. As shown in Figure 5.4,

our algorithm provides good continuity in both directions.
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5.4.5 Edge fixing

Recall that each block represents one warp-weft yarn crossing. When two ad-

jacent blocks copy their contents from disconnected blocks, visible seams may

be created, as shown in Figure 5.9. We introduce an efficient method to fix the

seams by shifting entire stacks of voxels along the Z direction.

Fixing a single block. Figure 5.7a illustrates the 2D case where both blocks

contain a single yarn and there is a seam on the edge between them. Assume

that the right end of yarn 1 and the left end of yarn 2 have depths h1 and h2,

respectively. Then the seam can be fixed by shifting up yarn 1 by ∆h := (h2 −

h1)/2 on the right, and yarn 2 by (−∆h) on the left.

For the 3D case, the desired amount of shifting is defined along the 2D bound-

ary of each block. However, only shifting the boundary stacks will create new

seams. We also need to update the inner stacks so that the entire adjustment

is smooth. We do this smooth adjustment of depths by solving a 2D discrete

Poisson equation.

Note that we focus on matching the top-most yarns. In the case of a multi-

layered fabric, this may cause errors (seams) for the yarns underneath. Fortu-

nately, they can be safely ignored since we cannot see those yarns directly and

the amount of shifting involved by this process is generally much smaller than

the radius of a single yarn.

Fixing all blocks. Although fixing one block is relatively easy, given that the

total number of blocks is in millions, the time and storage needed to compute

and store the solutions become prohibitive. However, the problem can be solved
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Figure 5.8: Edge fixing: constructing matrices T and L. The structure of block i
is shown in the middle, and assume that the blocks to its right and bottom are
respectively block j and k.

efficiently if all blocks have identical resolutions b1 × b2 × b3, which is normally

the case if the fabric samples are scanned using the same resolution.

For every block, say block i, let the boundary condition defined on its upper

edge be ti and that on its left edge be li. Stack all t and l vectors as columns

to form two matrices T and L with dimensions b1 ×MN and (b2 − 2) ×MN ,

respectively. The boundary conditions defined on a block’s right and bottom

edges can be represented using those on its right neighbor’s left edge and bottom

neighbor’s top edge, so they do not need to be stored. Figure 5.8 illustrates this

process.

Next, we compute rank-r approximations for the matrices T and L: T ≈

BT × CT ; L ≈ BL × CL where BT , BL respectively have dimensions b1 × r,

(b2−2)×r, while CT , CL are both r×MN . In our experiments, we tried multiple

r values and found that r = 15 works well. Then we solve the 2r Discrete

Poisson equations whose boundary conditions are given by each column of BT

and BL (and setting all other edges to 0). We store the solutions sTt and sLt for

t = 1, 2, . . . , r. It follows that the solution of the Poisson equation defined on

each block is (approximately) a linear combination of the stored values, since

the solution of a Poisson equation is a linear function of the boundary condition.

72



Periodic Patterns Seams

Figure 5.9: Randomization and edge fixing: (left) maximizing consistency and
continuity without randomization results in periodic patterns; (center) intro-
ducing randomization removes such patterns; (right) edge fixing significantly
improves the seams.

For block i, assume its right and bottom neighbors are block j and k, respec-

tively. Then the solution si at block i equals

r∑
t=1

(
CT (t, i) sTt + CL(t, i) sLt − CT (t, k) s̃Tt − CL(t, j) s̃Lt

)
where s̃Tt and s̃Lt are the vertically and horizontally mirrored copies of sTt and sLt ,

respectively.

In our implementation, we precompute CT , CL, sTt , sLt and obtain si at run-

time. In our experiments, storing this information takes roughly 150 MB of space.

Finally, when the voxel contents at location p = (px, py, pz) need to be fetched,

we adjust pz by si(px, py) before performing the volume lookup.

We have shown how to synthesize the volume data using several exemplars.

Next we will provide the details on creating those exemplars.

5.5 Exemplar creation

In this section we describe our pipeline of CT image processing. The goal is to

create a set of exemplar volumes in which each voxel contains three parameters:
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material density, local fiber orientation, and a yarn ID. The material density

and fiber orientation can be passed directly to the microflake model [43], and

the ID can be used to tell the type of yarn (warp or weft) and then obtain the

corresponding optical information from the input images. This information

combined yields a complete volumetric appearance model which can then be

rendered.

This stage starts with a basic processing step following [111] which takes raw

CT data and produces density and orientation information for each voxel. Next

we compute per-voxel yarn IDs and regularize the exemplar volumes.

5.5.1 Yarn tracking

To obtain the yarn ID for each voxel, we reconstruct the center curve, a discrete

line strip, for each yarn in the volume; this process is called yarn tracking.

Tracking. Given a yarn passing 3D point p, we can track it by iteratively com-

puting the tangent direction t at the current location and moving in that direction

by a small step d. The tangent direction t can be computed by averaging the

local fiber orientation over a small region around p:

t = normalize

 ∑
v∈Vp,t0

ωf (v)


where t0 is the tangent direction computed in the previous iteration, ωf (v) is the

local fiber orientation at v, and Vp,t0 is a volume around p defined by

Vp,t0 =
{
v ∈ R3 : ‖v − p‖2 ≤ R and |ωf (v) · t0| ≥ c0

}
where d and c0 are constants representing the size of a yarn (in voxels) and its

degree of deformation. In our experiments, d = 15, c0 = 0.7, and R respectively
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equals 20 and 30 when tracking warps and wefts.

If the input orientation field contains too much noise, the estimated t0 will

be inaccurate, which may cause the tracking step to fail. We therefore need to

ensure that the CT scans have not only sufficient resolution but also acceptable

signal-to-noise ratio, which can be ensured by using longer exposures.

Endpoint detection. To start the tracking process, an endpoint of every yarn is

needed. We detect the endpoints automatically using K-means clustering (with

the total number of clusters as user input).

We assume that the warps approximately go vertically (along the Y -axis)

while the wefts run horizontally. This can be easily satisfied by roughly aligning

the samples during the scanning process. Also, we assume that the user knows

the number of warps and wefts in the scanned volume.

To detect the warp centers on a 2D slice perpendicular to the Y -axis, we

perform a K-means clustering among those voxels on the slice whose fiber ori-

entations are close enough to the Y direction; the center of each cluster indicates

the warp centers. Similarly, the centers of the wefts can be detected by running

the same algorithm for any slice perpendicular to the X-axis.

Note that the computed yarn centers can be unreliable: noise and voxel

orientation errors can result in poor accuracy. We therefore run this process

for every slice along each axis and pick the one which minimizes the maximal

cluster radius.

Correction. Tracking a yarn by simply following the tangent direction causes p

to leave the yarn in highly curved regions. Therefore, we introduce a correction
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Figure 5.10: Center correction: (left) without the correction, the tracking that
starts from the left fails due to the yarn center leaving the volume; (right) with
the correction, the tracking process becomes more robust.

step after each tracking iteration. Every time p is updated with (p + d · t), we

iteratively move p to the center of mass of a small volume around it:

p←
∑

v∈Sp,t
ρ(v) · v∑

v∈Sp,t
ρ(v)

where ρ(v) denotes the material density at v, Sp,t is a 2D region surrounding p

on the slice which is perpendicular to the main direction of the yarn and contains

p. In our experiments, we made Sp,t elliptical to provide more freedom for p

to move along the Z-direction while preventing it from accidentally jumping to

a neighboring yarn. As shown in Figure 5.10, the correction step significantly

stabilizes the tracking process.

Discussion. Shinohara et al. [90] proposed a similar yarn tracking approach.

However, their method requires the user to enter the endpoint for each yarn and

does not have the correction step which has proven crucial for tracking the yarns

in our experiments.

5.5.2 Weave pattern detection

With the tracked yarns in hand, we would now like to infer their associated

weave pattern. For each yarn crossing, this entails determining whether the weft

passes above or below the warp. Mathematically, this property is captured by
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the linking number of the yarn curves [86]. Reminiscent of the winding number

in two dimensions, the linking number counts the signed number of times a

space curve wraps around another. Given parameterizations p1(t1) and p2(t2) :

[0, 1] → R3 of a warp and weft, respectively, we numerically compute their

linking number using the Gaussian linking integral

L1↔2 =
1

4π

∫
[0,1]2

〈
p1(t1)− p2(t2)

‖p1(t1)− p2(t2)‖3
2

,
∂p1

∂t1
× ∂p2

∂t2

〉
dt1dt2

Assuming that the warps and wefts are parameterized so that the projection of

their tangents into the plane of the weave pattern forms a positively oriented ba-

sis of R2, we assign the value 0 to this yarn crossing if L1↔2 > 0 and 1 otherwise.

Using this technique we can automatically detect weave patterns for single-

layered fabrics. For those with multiple layers, we must manually reason about

the layered structure to find the top-most yarn for each weave grid location

before computing the linking number.

5.5.3 Voxel segmentation

Based on the tracked yarns, we can tell which yarn each voxel belongs to. This

information is needed in the later steps of the pipeline. For each voxel, we assign

it to the yarn whose center curve minimizes the distance to the voxel. Note that

because the warp and weft yarns have different radii and stiffness, this simple

approach can cause small errors at the yarn crossings. Those errors, however,

are hardly visible in rendered results since they are hidden beneath the surface.
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5.5.4 Volume alignment

Since the samples are not perfectly registered during the scanning process, they

need to be aligned before being used for synthesis.

We solve for a global rotation around the Z-axis for each scanned dataset. For

the yarn i, let Yi be the set of voxels it contains. We perform PCA on {(vx, vy) :

v = (vx, vy, vz) ∈ Yi} to detect the principal direction of the yarn. Let ω0 and

ω1 be the average principal directions of the warps and the wefts respectively.

We rotate the whole volume around the Z-axis so that (ω0 + ω1)/2 matches the

diagonal line y = x.

5.5.5 Weaving grid registration

Given a volume with the associated weave pattern, we need to crop out the

incomplete yarns on the boundary and make the remaining part aligned with

the weaving grid. This sub-yarn level registration is crucial for the quality of

synthesized data since our algorithm works at the yarn level and may copy

incomplete parts of yarn crossings if the yarns are not centered in the blocks.

We first estimate the size (w, h) of the crop window by multiplying the num-

ber of complete yarns and their average sizes. Then the problem becomes that

of finding a translation (x, y) such that the content in the crop window agrees

with the weave pattern best.

Assume that the scanned volume has size s1× s2× s3. We compute an s1× s2

binary image b in which b(i, j) is set to 0 if the topmost non-blank voxel located

at (i, j) is part of a warp yarn and 1 otherwise. For each grid in the window

corresponding to one pixel in the weave pattern, we assign it a score that equals
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the fraction of pixels in b that agree with the weave pattern value. The best crop

window maximizing the total score of all grids can be computed in O(s1 · s2)

time using a summed area table.

For our scanned data, s1 = s2 = 1000, s3 = 300, w = 575, and h = 350. Using

this configuration, each cropped volume contains 5 × 5 yarn crossings. Thus

every block has the resolution 115× 70× 300.

5.5.6 Summary

We create our exemplar database by taking the processed CT data, tracking the

yarns, computing per-voxel yarn IDs, detecting the weave pattern, and regular-

izing the volume. Our pipeline requires a small amount of user input including

the thresholds for tracking, the number of yarns for endpoint detection, yarn

grouping for weave pattern detection, and the resolution of a single block for

weaving grid registration. For creating each of our exemplars, the entire process

(excluding the basic processing step from Chapter 4) runs in seconds.

5.6 Experimental results

We show two types of results to demonstrate our technique: comparisons of

our synthesized results with real fabricated cloth samples, and new designs

synthesized using our algorithm. Our renderings are generated using Monte

Carlo volume path tracing implemented in the Mitsuba renderer [42].

First, to demonstrate the accuracy of our approach, we compare our results

with real fabricated cloth samples. Several designs, including a “test blanket”
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(a1) (a2) (b1) (b2)

(c1) (c2)

Figure 5.11: Comparisons between photographs of fabricated cloth samples (left)
and rendered images with the synthesized data (right): (a) a Herringbone fabric;
(b) a fabric containing all 9-twill patterns; (c) a Jacquard fabric (design courtesy
of Brooks Hagan).

of 5-twill and 5-satin example patches (shown in Figure 5.2d), were woven on

an industrial Jacquard loom (see Figure 5.12) at Rhode Island School of Design

(RISD). Solving for the optical properties of multiple kinds of yarns in a fabric is

beyond the scope of this work, so we manually picked colors for the black warp

and green weft to obtain a rough match in appearance.

The results demonstrate our ability to correctly predict the structure and

overall appearance of woven fabrics before they are fabricated, meaning that

our methods are useful for textile designers who currently design “in the blind”
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Figure 5.12: The industrial Jacquard loom at Rhode Island School of Design
used to weave our samples: (a) harnesses used to lift the warps; (b) the warp
yarns; (c) spools of multi-colored weft yarns; (d) the shuttle for carrying and
inserting wefts.

without seeing any realistic preview of the cloth before fabrication.

We first pick two example weaves, Herringbone and a 9-twill pattern, that

are not in our input set of exemplars, thus demonstrating the power of our

approach to generalize to complex weaves. These are shown in Figure 5.11ab

(in the 9-twill results, the fabric is rotated by 90◦ with the wefts going vertically).

While our results are more regular than the photo, we successfully capture the

key structure of both patterns. As shown in Figure 5.4, our algorithm copies big

chunks of data if similar structures are contained in the database (the orange

region) and synthesizes other regions from smaller pieces. Note that we are not

allowed to rotate the exemplars, because the warp and weft yarns are dissimilar,

or to mirror them, because that would reverse the twist of the yarns, destroying

the consistency of local fiber orientations.

Next we synthesized a model using the weave pattern that was used to weave

the Jacquard sample. Figure 5.11c shows a comparison between our synthesized

result and the real sample.

Finally, Figure 5.13 show more results synthesized using our technique and

mapped to arbitrary surfaces using shell mapping [83]. In each image the weave
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pattern or the posterized image used to create the weave pattern is shown at the

top left corner, and magnified insets appear at the bottom right.

All weave patterns used to synthesize these results have the resolution of

900× 1500. Our synthesis algorithm runs in no more than 10 seconds to create

each output volume containing 3.26×1012 effective voxels. Each rendered image

has the resolution 2560 × 1440, and the rendering time varies from 15 to 40

minutes on a QSSC-S4R Intel Server with 32 logical cores.

Figure 5.13a shows a fabric created with a 96 × 96 wavy twill pattern. This

input is very different from the patterns in our exemplar set; thus it is difficult

to copy large pieces of continuous structure. Our approach does a good job of

synthesizing the fabric with smooth shading across the surface.

In Figure 5.13b, we show a fabric containing alternating 1/15 and 15/1 satin

blocks with all yarns assigned identical optical properties. This kind of same-

color patterning is often used in fabrics for bed linens and draperies. Because

the yarns go in perpendicular directions, the fabric has highly anisotropic ap-

pearance. By correctly synthesizing the structure of the yarn we are able to

automatically capture this characteristic appearance. In addition, 3D structures

created by the transitions between the two weave patterns can be easily observed

even at a large scale.

Figure 5.13c shows a Jacquard cloth with 1/7 twill and 7/1 satin respectively

forming the golden and the red area. The posterized image used to generate

the pattern is shown on the upper-left. Again, the different structure of the two

weaves results in distinctive anisotropic behavior that is captured well by our

method.

Figure 5.13d shows a complex Jacquard cloth with two weft colors (white
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and golden). The design is provided as an example in Pointcarré [81]. The

synthesized result conveys a richly detailed surface structure.

5.7 Conclusion

We have demonstrated an approach to generate highly realistic volumetric mod-

els with spatially varying appearance and complex designs. Our approach takes

advantage of micro CT imaging to measure highly detailed 3D structure and

introduces a synthesis process to generalize the measured data to model fabrics

with complex larger-scale structures. Our contributions include a robust pipeline

for rapidly creating exemplars for fabrics, and a fast synthesis algorithm to cre-

ate complex volumetric models. We have validated our synthesized results by

comparing them to fabricated real samples.

We believe that this technique is very useful for both the computer graph-

ics community and the textile design community. Using our exemplars, users

can now create high quality fabric models with their own designs without hav-

ing to write specialized code. And textile designers can use our approach to

predictively visualize their designs without physically creating them.

There are multiple areas of future work. One limitation of our work is that

our method can only synthesize models with a grid-like weave structure. We

would like to extend our framework to support more structures (e.g., knitwork).

For more automated, predictive rendering of existing fabrics, better appearance

matching methods that solve for the optical properties of multiple kinds of yarns

are needed. Finally, better optical models may be required to perfectly match

the appearance of fabric samples.
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CHAPTER 6

MODULAR FLUX TRANSFER

In this chapter, we describe the third component of our main pipeline (Fig-

ure 1.3): a precomputation based algorithm for efficient rendering of high-

resolution appearance models created in Chapters 4 and 5.

Since our models are structured, with repeated patterns approximated by

tiling a small number of exemplar blocks, we precompute voxel-to-voxel, patch-

to-patch, and patch-to-voxel flux transfer matrices for each of those blocks. Such

precomputed information of an exemplar database can be reused to accelerate

the rendering of any model synthesized from it. At render time, we introduce a

modular flux transfer algorithm based on Monte Carlo Matrix Inversion (MCMI)

to approximate higher-order scattering, which normally takes the majority of

rendering time. This work originally appeared at ACM SIGGRAPH 2013 [110].

6.1 Introduction

High-quality rendering of complex materials increasingly uses volumetric data,

such as the high-resolution micro-CT cloth models created using methods in-

troduced in Chapters 4 and 5. However, rendering optically dense volumetric

media is challenging for multiple reasons: their high resolution (with voxel sizes

of a few microns), the complex occlusion in the medium, and the anisotropic

phase functions that influence light scattering. Moreover, computation is dom-

inated by multiple scattering within long light paths (5-100 scattering events),

especially when the single-scattering albedo is high. This leads to an undesir-

able situation, where rendering brighter colored materials becomes substantially

more expensive. To date, pure Monte Carlo path tracing has proven the only
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(a) (b) (c)

Figure 6.1: We introduce a modular flux transfer (MFT) framework to approx-
imate high-order scatterings in extremely complex volumes. (a) a scene con-
taining a purple tablecloth with 2009 × 3300 yarn crossings represented by an
anisotropic volume consisting of 1.06 × 1013 effective voxels; (b) a 5× zoomed
version of the left image, illustrating the complexity of the cloth volume; (c) a
25× zoomed version.

reliable method for rendering such materials, but so far has been too slow for

wide-spread use: tens to hundreds of core hours are required to produce the

images in [111].

In this chapter, our goal is to significantly improve upon this situation; the

approach we take is based on the following insights. First, complicated volu-

metric media like cloth often contain repetitive building blocks, such as yarn

crossings. This suggests the possibility of precomputing light transport in these

blocks, and modularly combining them into a complex volume: we are inspired

by [62] who introduced a similar idea for approximating indirect lighting in

blocked scenes. Second, in dense media with high albedos, such as white or

bright-colored fabrics, high-order multiple scattering is the most expensive com-

ponent and contributes significantly to overall appearance [72, 43]. This suggests

that speedup is most likely to be achieved by accelerating the computation of

the extremely expensive, but lower-frequency multiple scattering. A similar ap-

proach is common for subsurface scattering, but diffusion approximations do

not easily apply to the complex volumetric media we are interested in, since they

are often based on assumptions of isotropy, homogeneity, and flat boundaries.
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The key challenge to a scalable solution is high dimensionality. In the most

general case, light transport is a linear operator that maps emitted radiance

into final radiance. The radiance on the boundary of a volume is a function of

position and direction: a 4-dimensional light field. Worse yet, a precomputed

approach seems to require the 8-dimensional linear mapping between two such

light fields. Our key insight is that we can handle the curse of dimensionality

inherent in this problem by slightly modifying the long light paths, while keep-

ing the short light paths intact. This way we make the problem tractable while

maintaining accuracy.

We use these insights to develop a precomputation-based method for ren-

dering volumetric media with repeated structures. Our algorithm separates

low-order and high-order scattering, and modularly precomputes the latter. We

model the volumetric medium as a grid of voxelized blocks. While a full volume

may consist of millions of blocks, there are only a few (tens or hundreds) unique

exemplar blocks required to synthesize it [112]. We precompute the voxel-to-

voxel, patch-to-patch, and patch-to-voxel flux transfer matrices for each of these

exemplar blocks. At render time, we modularly stitch together light transport

using the precomputed matrices to efficiently compute higher-order scattering.

Our contributions include:

• A new formulation for the efficient and tractable rendering of anisotropic

volumes by exploiting modularity, and avoiding the curse of dimensional-

ity.

• A Monte Carlo matrix inversion based algorithm to make our approach

tractable for very large volumes with millions of blocks, each with thou-

sands of voxels.
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• Results demonstrated on a variety of highly complicated volumes, with a

focus on cloth (Figures 6.1, 6.14, and 6.15), but generalizing to non-cloth

synthesized volumes (Figure 6.16) as well.

We show that this approach can, in many cases, accelerate rendering over

path tracing by an order of magnitude. It also significantly outperforms tech-

niques like photon mapping on these media. While the previous research on

highly complex measured volumetric materials generated significant interest,

it was too expensive in practice. We believe that our method, which runs fast

enough on a single server with relatively low memory requirements, will make

these materials usable in demanding industry applications including interior

design and digital effects.

6.2 Background: path integral formulation

A powerful path formulation of the volume rendering equation (2.2) was intro-

duced by Pauly et al. [78] as an extension of Veach’s work [95] on surface-based

rendering. The intensity of a pixel in the rendered image is expressed as an

integral over all light paths in the scene passing through this pixel.

I =

∫
Ω

f(x̄) dµ(x̄). (6.1)

Here µ is a measure on the path space Ω =
⋃
l≥1 Ωl, and Ωl is the space of paths

with l segments, x̄ = x0x1 . . .xl, such that x0 is the camera position, x1 is the

surface point or volumetric scattering location directly visible through the pixel,

xl is on a light source and x2, . . . ,xl−1 are any light bounce points in the scene.

The contribution f(x̄) of any single path x̄ = x0x1 . . .xl is the product of a

pixel weight term W (x0←x1), a light emission term Le(xl−1←xl), geometry terms
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G(xk↔xk+1) corresponding to each segment of the path, and material terms

M(xk−1←xk←xk+1) corresponding to every interior vertex. Geometry terms

contain exponential extinction (inside volumes) and 1/r2 falloff when neces-

sary. Note also that cosine terms are included in G for surface but not volume

events. In the case of volumetric media, the material terms contain a (possibly

anisotropic) phase function evaluation:

M(x,ω1,ω2) = α(x)σt(x,ω1) p(x,ω1,ω2) (6.2)

We assume the albedo α(x) is not directionally dependent. The material term

is reciprocal, though the phase function is generally not; as detailed by Jakob

et al. [43], the phase function observes the slightly more involved reciprocity

relationship σt(x,ω1) p(x,ω1,ω2) = σt(x,ω2) p(x,ω2,ω1). We use the microflake

phase function [43, 111], which satisfies this relationship, in addition to other

desirable properties.

We use this path formulation to describe our method. Note that path integrals

can also be easily applied to paths that do not have endpoints on the camera or

light source.

6.3 Overview

In this section, we describe the main computational difficulty in rendering com-

plex, optically thick media with anisotropic phase functions. We introduce two

key simplifications to make the problem tractable: isotropy and diffuser events

in long light paths. Based on these simplifications, we introduce a modular ap-

proach, which precomputes the light transport within blocks of the volume. The

modularity is inspired by Loos et al.’s [62] approach. However, there are differ-
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x̄ a light path (sequence of vertices)
µ(x̄) measure on path space (product of

surface and volume measures on ver-
tices)

f(x̄) product of geometry and material
terms along path, pixel weight (for
camera vertices) and light emission
(for light vertices)

G(x1↔x2) geometry term (contains 1/r2 falloff
when necessary, volume extinction,
and cosine terms for surface, but not
volume vertices)

M(x,ω1,ω2) material term: a product of the
phase function p(x,ω1,ω2), the single-
scattering albedo α(x), and the extinc-
tion coefficient σt(x,ω1)

Bi block: a grid of voxels
Vi voxel: at precomputation level, not

data level
Ni non-empty subset of voxel Vi
|Ni| volume of Ni

Pi patch: an oriented voxel face on the
shared interface between two blocks

flip(i) flip operator on set of patch indices
Q a permutation matrix encoding flip(i)
T vv
i , T vp

i , voxel-to-voxel, voxel-to-patch, patch-
to-voxel,

T pv
i , T pp

i and patch-to-patch transfer matrices
for block Bi

T̃ vv , T̃ vp, global completions of transfer matri-
ces

T̃ pv , T̃ pp

Φs source flux: integral of illumination
up to first scattering event

Φgt ground truth multiple-scattered flux
Φm multiple-scattered flux (approxima-

tion of Φgt computed by modular
transfer)

Table 6.1: Summary of notation; bold letters indicate vectors.

ences in the main challenges that need to be handled. While Loos et al.’s main

challenge is compression of the transport into very small vectors of coefficients

that allow for real-time evaluation, we instead need to deal with extremely large

resolution and long light paths.

Key challenge: long paths. The volumetric path integral can be naturally
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Figure 6.2: The increase in the total energy of an image, and the correspond-
ing increase in the variance of a Monte Carlo path tracer, as a function of the
maximum number of scattering events (with number of samples held constant).
The data is measured on our felt scene (top of Figure 6.14), where the green
single-scattering albedo has been set to 0.99.

evaluated by Monte Carlo sampling of paths with known probabilities, which

leads to a standard volumetric path tracer. The problem with this approach is its

slow performance, especially for materials with highly complicated structures,

such as data-driven cloth, where creating each path vertex executes a Woodcock

tracking procedure to importance-sample extinction, and has a significant cost

of many non-cached memory accesses. Furthermore, a significant amount of

energy (and resulting variance) is in paths with many segments. This problem

is most significant for bright colors, which have a high single-scattering albedo

in one or more color channels. Figure 6.2 shows the increase in energy in a cloth

sample if albedo is high, and the corresponding increase in variance in a path

tracing solution.

Diffuser and isotropy events. Shorter paths can be handled by pure path

tracing; like some previous approaches, we apply our approximations to longer

paths. The key difference is that we take advantage of the repeated structure in

the volume to precompute a large number of paths, driving the effective num-
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(a) diffuser event (b) isotropy event

cosine
approximation

isotropic
approximation

actual
phase function

Figure 6.3: Inserting isotropy events and diffuser events into paths makes
the underlying path integral separable, at the cost of introducing some error. If
these events are inserted into paths of sufficient length, the error will be close to
imperceptible.

ber of paths significantly higher (and the noise much lower) than any non-

precomputed approach.

One key challenge is to split paths into precomputed and runtime compo-

nents without introducing high-dimensional (and therefore expensive) interme-

diate data representations. The coupled nature of the material terms along a

path through an anisotropic volume makes any attempt to split the problem into

subproblems (some of which could be precomputed) seem hopeless.

We propose modifying the problem by inserting diffuser events and isotropy

events into some paths (see Figure 6.3). We found that setting the phase function

on a small number of vertices of a long path to be isotropic creates very little

error in the final image, which makes precomputation feasible. Therefore, we

insert isotropy events on the k-th vertex from the camera and the last vertex

before the light. Also, we insert zero or more diffuser events in between. These

modifications provide significant advantages by making the underlying path

integrals separable, in the sense that they can be factored into a product of

integrals “before” and “after” the isotropy/diffuser event. This allows us to

split the paths into components that are precomputed offline, and computed
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voxels interfaces

P1

P3

P2

voxel-to-voxel
transfer

patch-to-patch
transfer

voxel-to-patch
transfer

Figure 6.4: Definitions of voxels, interfaces, patches, and three types of precom-
puted transfers, each of which corresponds to a matrix. Note that patch-to-voxel
transport is the transpose of voxel-to-patch.

at runtime. In other words, this enables us to use flux instead of light fields

as the quantity being transported, addressing the curse of dimensionality, and

making the problem tractable. These assumptions are later used in Sections 6.5.1

and 6.5.3. In comparison, modular radiance transfer [62] uses low-resolution

lightfields at block boundaries. We considered coarse directional discretizations,

but found their storage to be too expensive: for example, 32 directional bins

would inflate our precomputed data 1,024 times.

We show that, if done for paths of sufficient length, these modifications have

little effect on the accuracy of the solution. In fact, as our results show, the accu-

racy of our results is higher with a practical number of samples than with meth-

ods like path tracing or photon mapping. While theoretically these approaches

do not make any isotropy or diffuser approximations, in practice they need

many more samples to achieve a quality as high as our results (Section 6.6.2).

6.3.1 Definitions

Blocks. We divide the volume into a number of equal-sized blocks. Our algo-

rithm makes no assumption about the definition of a block. For our woven fabric
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data, a block is defined to be of size about 0.5 mm (approximately a yarn crossing,

as suggested in [112]). We treat the volume as consisting of a 2-dimensional grid

of blocks without loss of generality; the grid could also easily be 3-dimensional,

but in our results there is always only one block across the thickness of the vol-

ume). The full volume can be made of millions of blocks, but due to repeating

structures, only a small number (up to one or two hundreds in our case) of the

blocks are unique, and we call them exemplar blocks.

Voxels. Each block is divided into n voxels V1, V2, . . . , Vn, which provide the

resolution at which precomputed transfer occurs. Note that these voxels are

separate from the underlying volume’s representation, which can have much

higher resolution; i.e., within each precomputed transfer voxel, there can still

be many underlying data voxels. We define the non-empty subset of voxel Vi as

Ni := {x ∈ Ṽi | σt(x,ω) > 0 for some ω} where Ṽi ⊂ R3 denotes the 3D space

contained in voxel Vi.

Interface. We define an interface to be the rectangular shared boundary be-

tween two neighboring blocks. The final volume can contain millions of distinct

interfaces.

Patches. We define patches P1, P2, . . . to be oriented faces of voxels on an

interface. Oriented-ness means that each patch can be associated with a nor-

mal vector n(Pi), pointing into one of the neighboring blocks of the underlying

interface. Patches will serve the purpose of connecting the transfer between

blocks.

Figure 6.4 shows a flatland visualization of a volume consisting of three

blocks, each of which is divided into 3× 5 voxels. In this example, there are two

interfaces and twelve patches. This corresponds directly to our actual algorithm,
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source flux
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voxel-to-patch
transfer

multiple
patch-to-patch

transfers

final
gathering

patch-to-voxel
transfer

voxel-to-voxel
transfer

Figure 6.5: The three phases of the runtime stage of our pipeline. We use
dashed lines to indicate sub-paths with length ≥ 1 which can contain multiple
scattering events.

Figure 6.6: Cropped 2D slices of the flux field of a synthetic volume with
three blocks where the interfaces are indicated with blue arrows: (left) path-
traced reference; (center) applying precomputed voxel-to-voxel transfer within
blocks leads to darkening, because paths crossing the boundaries are missing;
(right) adding transfer across boundaries addresses this energy loss.

except the real implementation is in three dimensions, uses millions of blocks,

and is optionally warped by a shell-map [83] (to bend the volume into a curved

shape).
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6.3.2 Modular transfer pipeline

The pipeline of our system consists of the following stages:

Transfer matrix precomputation. In this stage, we pre-compute the light

transfer for a set of exemplar blocks which can later be used to assemble full

high-resolution volumes using various techniques including [112]. In particular,

we compute three types of transfers, voxel-to-voxel, voxel-to-patch, and patch-

to-patch, which will be introduced in Section 6.4.

Runtime evaluation. At the runtime stage, the pipeline is split into the fol-

lowing three phases (see Figure 6.5):

1. Source flux evaluation. We first evaluate the amount of attenuated light ar-

riving at voxels directly from a light source. This can be treated as the first

scattering event, and will serve as the source term for the light propagation

of precomputed transfer matrices. Note that, conceptually, the source flux

includes the scattering event (more precisely, the material term).

2. Modular transfer. Given the source flux, we apply our precomputed trans-

fer to obtain multiple-scattered flux. The voxel-to-voxel transfer captures

light transfer within individual blocks, and accounts for the bulk of short

range transport. Further, voxel-to-patch and patch-to-patch transfers pro-

vide longer-range transport that crosses block boundaries. All of these

transfers are introduced in Section 6.5.2.

3. Final gathering. Finally, we run a standard path tracing algorithm accel-

erated by looking up the previously computed scattered flux field after

k scattering events (paths with less than k scatterings are computed by

explicit path tracing). More details are available in Section 6.5.3.
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(a) (b) (c)

Figure 6.7: Visualizations of precomputed transfer matrices of a twill block
with 470 patches and 1239 non-empty voxels: (a) patch-to-patch, (b) voxel-to-
voxel, and (c) patch-to-voxel.

6.4 Precomputation

In this section, we describe the precomputation stage of our pipeline. Given a

block divided into n voxels, we define three kinds of transfer matrices: voxel-to-

voxel, voxel-to-patch, and patch-to-patch. Below we give precise definitions of

the elements of the transfer matrices, and describe a Monte Carlo particle tracing

algorithm to compute them.

Voxel-to-voxel. The voxel-to-voxel transfer matrix T vv handles most (but not

all) of the light transport: because of the short mean free path in optically dense

materials, most transport is local, even though it requires many scattering events.

Figure 6.6 compares the amount of transport contained within the voxel-to-voxel

transfer versus the other transfer modes.

The element (i, j) of T vv is defined as a path integral, where the endpoints of
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the paths are in Ni and Nj , the non-empty subsets of Vi and Vj :

T vv(i, j) =

∫
Ω(Ni,Nj)

f(x̄) dµ(x̄). (6.3)

Here Ω(Ni, Nj) means the set of paths (with one or more segments) with end-

points in Ni and Nj , respectively (see the left block in Figure 6.4). This definition

implies that T vv is symmetric. The use of the non-empty subsets Ni instead of

the full voxels Vi is important for several reasons. It leads to sparser matrices

(and thus less storage). Furthermore, defining the path integral this way helps us

to compute total flux within non-empty regions of a voxel, which approximates

the radiance values at scattering events better (since these never occur in empty

regions).

We compute T vv using Monte Carlo particle tracing, as shown in Algo-

rithm 6.1. For each voxel Vi, we trace m paths. For each of the m paths we

trace the path through the block, with appropriate importance sampling, and

deposit values into the appropriate (i, j) entry in the transport matrix Tvv. This is

done inside the loop on lines 6-18. Each path terminates when it exits the volume

(line 12). At each vertex, energy is deposited (line 14) and then multiplied by the

albedo (line 15). Note that the deposition is divided by the probability density

of the initial particle generation, captured in the initial weight w = |Ni| for posi-

tion choice (where |Ni| is the volume of the non-empty voxel subset), and 4π for

direction choice. The value is also divided by the value of σt at the deposition

vertex, because it figures in the sampling probability density but not in the path

integral we want to compute. Since x′ is chosen by importance-sampling σt, it

holds that σt(x′,ω) > 0 in line 14, preventing any division-by-zero issues.

In summary, the particle tracing importance-samples all terms along a path

other than the initial probability, albedo terms, and the final division by σt, which
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Algorithm 6.1 A particle tracing based method for computing the voxel-to-voxel
transfer matrix T vv given a block B.

1: T vv ← 0
2: for i = 1 to numVoxels do . Loop over all voxels
3: for t = 1 to m do
4: sample a ray (x,ω) with x ∈ Ni and ω ∈ S2

5: w ← 4π|Ni| . Weight initialization
6: loop
7: sample s (with Woodcock tracking) according to

p(s) = σt(x + sω,ω) exp

(
−
∫ s

0

σt(x + s′ω,ω) ds′
)

8: x′ ← x + sω . Get a scattering event at x′

9: if x′ ∈ B then
10: find the voxel j that contains x′

11: else
12: break . Terminate the path
13: end if
14: T vv(i, j)← T vv(i, j) + w/σt(x

′,ω)
. Deposit energy

15: w ← w · α(x′) . Update the weight
16: sample direction ω′ according to material term at x′

17: (x,ω)← (x′,ω′) . Continue the path
18: end loop
19: end for
20: end for
21: T vv ← T vv/m

are exactly the terms that occur explicitly in the weighting.

Voxel-to-patch. As shown in the right block of Figure 6.4, the voxel-to-patch

transfer matrix T vp is similarly defined as the integral over paths between a

voxel Vi and patch Pj :

T vp(i, j) =

∫
Ω(Ni,Pj)

f(x̄) dµ(x̄), (6.4)

where Ω(Ni, Pj) is again naturally defined as the set of paths with endpoints in

Ni and Pj . Importantly, the non-empty voxel subset Ni is used again. Note the

99



contribution f(x̄) includes a cosine term on the path vertex that lies on the patch.

This is because geometry terms include a cosine on surfaces, and the patch is

treated as a surface. Note that patch-to-voxel transport T pv is the transpose of

T vp, so no separate definition is required for it. These matrices are normally not

square.

The computation of T pv is handled similarly to T vv by volumetric particle

tracing, except the origin of a particle is chosen on a patch, and its direction is

chosen by importance-sampling the cosine of the angle from the patch normal.

Patch-to-patch. The patch-to-patch transfer matrix T pp is defined as the integral

over paths between patches Pi and Pj (see the center block in Figure 6.4):

T pp(i, j) =

∫
Ω(Pi,Pj)

f(x̄) dµ(x̄). (6.5)

Computing T pp is analogous to T vp, except deposition occurs at other patches

instead of voxels. Matrix T pp is also symmetric.

Summary of precomputation. Assume we have a set of exemplar blocks

which can be assembled to construct very large volumes. For the i-th exemplar

block, we precompute and store the voxel-to-voxel, voxel-to-patch, and patch-

to-patch matrices T vvi , T vpi , and T ppi . Figure 6.7 visualizes the transfer matrices of

a block of twill fabric with shiny red fibers.

6.5 Runtime evaluation

In this section, we describe the three phases of the runtime stage of our pipeline:

source flux evaluation, modular transfer, and final gathering. The first and third
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(a) (b) (c)Φs T̃ vvΦs T̃ vpΦs

Figure 6.8: Light paths captured by (a) source flux Φs; (b) Φs with voxel-to-voxel
transfer applied; (c) Φs with voxel-to-patch transfer applied.

stages are based on standard approaches, while the core complexity lies in the

second phase, where the precomputed transfers are applied.

6.5.1 Source flux evaluation

The runtime of our pipeline starts by evaluating the source flux vector Φs, which

is the amount of single-scattered light arriving at voxels directly from the set of

direct light sources (see Figure 6.8a). Denote the set of emissive surfaces C. Let

Ω1(Ni, C) be the set of unscattered paths (i.e., direct single-segment connections)

from voxel subsets Ni to the set of emissive surfaces C. Denote these single-

segment paths by x̄ = x0x1. The elements of Φs can now be defined as:

Φs(i) =

∫
Ω1(Ni,C)

∫
S2

M(x0,ω,
−−→x0x1)f(x̄) dω dµ(x̄). (6.6)

An important detail is that, intuitively, we are including in Φs light that scattered

once. More precisely, we include the material term in the definition, integrating

it over all directions. This is the first application of an isotropy event: since

we do not know ω, the direction light will take after this scattering event, we

integrate over all such directions.

We compute Φs by particle tracing, and store it as a sparse vector where the
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block 1 block 2

block 3 block 4

T vv
1 T vv

2

T vv
3 T vv

4

T vv
1

T vv
2

T vv
3

T vv
4

T̃ vv =

Figure 6.9: Formation of block-diagonal matrix T̃ vv for a volume with four
blocks.

total number of non-zero entries never exceeds the number of traced particles,

and is usually much smaller than the number of voxels. The noise in Φs is

not a problem, because the application of the precomputed transfer matrices

multiplies the effective number of paths by a large number.

6.5.2 Modular transfer

The goal of the modular transfer phase of the pipeline is to use the precom-

puted matrices to turn source flux into multiple-scattered flux, which can then

be simply looked up by the final gather phase of the pipeline. We define the

ground-truth multiple-scattered flux Φgt as:

Φgt(i) =

∫
Ω2+(Ni,C)

f(x̄) dµ(x̄). (6.7)

Here, by
∫

Ω2+(Ni,C)
we mean paths with 2 or more segments. Our goal is to com-

pute an approximate multiple-scattered flux Φm by application of precomputed

transfer, such that Φm ≈ Φgt. An important detail is that Φm, unlike Φs, does

not conceptually contain the scattering event, i.e. the material term; it will be the

responsibility of the final gather phase to include it.

For the final volume (where each block is the copy of an exemplar), let the

transfer matrices of the i-th block be T vvi , T vpi and T ppi . We define the global
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completions of these matrices, which operate on a global indexing of all voxels

and patches in the volume, and denote them by T̃ vv, T̃ vp, and T̃ pp. If we assign

contiguous indices to voxels belonging to the same block and patches belonging

to the same interface, then T̃ vv and T̃ pp become block diagonal (see Figure 6.9). In

other words, this is simply an imaginary stacking of the precomputed matrices

for different exemplar blocks, so that we have only one large block-diagonal

matrix for each transfer type.

Given the source flux vector Φs, the first step of the modular transfer phase

is the application of voxel-to-voxel transfer. This is accomplished simply by

computing the matrix-vector multiplication T̃ vvΦs (see Figure 6.8b).

However, the voxel-to-voxel matrix T̃ vv only encodes transfer over paths that

do not cross block interfaces, as shown in Figure 6.8b. To compensate for this

omission, we need to propagate the flux to the block interface, “cross” to the

other side of the interface to enter the neighboring block, and then propagate

further to voxels in that block.

More precisely, we transfer voxel fluxes into patch fluxes by an application

of T̃ vp (see Figure 6.8c). Now the patch flux on patch Pi describes the amount

of light it receives. Let flip(i) denote the index of the patch that overlaps with i

but with the opposite normal direction (so patches Pi and Pflip(i) always belong

to immediately neighboring blocks). This flip operator can be written as a per-

mutation matrix Q on the set of global patch indices. To propagate the patch

flux received by Pi, we make the opposite patch Pflip(i) to emit the same amount

of energy into the neighboring block (see Figure 6.10ab): this is an application

of a diffuser event, which prevents the need to store a directionally-dependent

function on each patch; instead it suffices to compute a scalar quantity, the patch

flux. Note that this assumption is crucial to making our approach tractable since
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storing directional variation would prohibitively increase the amount of storage.

However, this still does not account for all light paths. To allow the energy to go

further, we need to apply QT̃ pp multiple times, to go from patch to patch across

entire blocks (see Figure 6.10cd). This will add the light traversing block bound-

aries for longer range transport. This eventually leads to the correct expression

for computing the multiple-scattered flux:

Φm = T̃ vvΦs + T̃ pv

( ∞∑
a=0

(
QT̃ pp

)a)
QT̃ vpΦs. (6.8)

Let U := I−QT̃ pp. Rewriting the infinite series in (6.8) using the Neumann series

yields:

Φm = T̃ vvΦs + T̃ pvU−1QT̃ vpΦs, (6.9)

which can be computed as follows. First, we compute by solving a linear system

the patch flux:

Φp := U−1QT̃ vpΦs, (6.10)

which equals the amount of energy emitted by each patch i contributed by light

paths going across one or more interfaces and flipping across the interface. Then

we evaluate (6.9) using Φm = T̃ vvΦs + T̃ pvΦp.

To compute Equation (6.10), we need to solve a large linear system UΦp =

QT̃ vpΦs. Since U is usually asymmetric (because of the flip operator Q), conju-

gate gradient based algorithms cannot be applied here. Instead, we introduce

two methods corresponding to finite element and Monte Carlo approaches to

solve this system.

Jacobi Iteration. We can simply truncate the Neumann series, which results

in Jacobi iteration. We start with Ψ(0) = QT̃ vpΦs, and in the t-th iteration, we

compute Ψ(t+1) = QT̃ ppΨ(t) + Ψ(0). After a few iterations, set Φp = Ψ(t). Note
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block 1 block 2 block 3 block 1 block 2 block 3

block 1 block 2 block 3 block 1 block 2 block 3

(a) T̃ vpΦs (b) Ψ0 := QT̃ vpΦs

(c) T̃ ppΨ0 (d) QT̃ ppΨ0

Figure 6.10: An example of patch flux propagation. The scene contains 3 blocks
and 4 patches defined over 2 interfaces. Assume that all voxels have zero flux
except for one in block 1 marked with the red square. Then (a) shows the patch
flux received by the right patch in block 1; (b) applying flip operator Q gives
patch flux emitted by the left patch in block 2; (c) multiplying by T̃ pp gives the
patch flux received by both patches in block 2; (d) applying another Q yields the
patch flux emitted by the two patches in blocks 1 and 3.

that neither T̃ pp nor Q needs to be formed explicitly; instead, for any given

vector v, T̃ ppv can be computed by performing the patch-to-patch transfer on

each block, and Qv can be obtained by permuting v’s elements.

Monte Carlo Matrix Inversion. Although Jacobi iteration works adequately, it

may take many iterations to converge and requires storing the full vector Ψ(t)

(whose size equals the total number of patches), which can be very expensive:

the tablecloth in Figure 6.1, for example, contains many millions of block inter-

faces, each with hundreds of patches. To make our method truly scalable to very

large models, we implemented a Monte Carlo method based on [24], which does

not require the storage of Φp explicitly. Let

Φls := T̃ pvΦp = T̃ pvU−1QT̃ vpΦs, (6.11)
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Algorithm 6.2 Random walk estimating Φls(i).

1: (j, s)← sampleRow(T̃ pv, i) . Jump from voxel to patch
2: loop
3: j ← flip(j) . Flip the patch
4: Let q be the stop probability
5: if rand() < q then . Russian roulette
6: s← s/(1− q)
7: break
8: end if
9: (j, v)← sampleRow(T̃ pp, j) . Jump to another patch

10: s← sv/q . Update the throughput
11: end loop
12: (i′, v)← sampleRow(T̃ vp, j) . Final jump to voxel
13: return Φs(i′) sv

which is the component of the multiple-scattered flux that requires solving a lin-

ear system (i.e., summing a Neumann series). If elements of Φls can be efficiently

estimated, we can then compute Equation (6.9) with Φm = T̃ vvΦs + Φls.

To do this, we define a random walk whose expected value is the i-th element

of Φls. The random walk intuitively traces a “path”, whose “vertices” are dis-

crete states corresponding to voxel and patch indices, instead of actual scattering

points, and its “edges” consist of multi-vertex jumps precomputed within the

transfer matrix elements.

The algorithm conceptually starts at voxel Vi, and immediately transitions

into the j1-th patch, with a discrete probability distribution proportional to the

i-th row of T̃ pv. Then, a series of transitions between patches with indices j1,

j2, j3, . . . is made with probabilities proportional to a corresponding element

of the matrix T̃ pp. A Russian roulette approach is used to eventually terminate

this loop, making a final transition to a voxel index i′, with probability based

on the corresponding row of T̃ vp. At this point, the i′-th element of source flux

Φs is queried and scaled by terms accumulated along the path. It is not difficult
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Figure 6.11: Convergence experiment: we rendered multiple results with our
method (solid lines) and path tracing with terminating the path after k scatter-
ings (dashed lines) using varying k values and computed their L2 error (plotted
as log(1 + y) for error y). Note that the graphs do not converge to zero, because
there is Monte Carlo noise in both images being compared.

to see that the expected value of this process is precisely the matrix expression

containing the Neumann series that we are interested in computing. Note that

each transition in this random walk can capture many light scattering events

which are expensive to simulate exactly.

Algorithm 6.2 describes the random walk in more detail. In the algorithm, we

use a sampleRow(A, i) function, which returns the index of an element sampled

from the i-th row of matrix A, with a probability proportional to the element’s

value. It also returns the value of the element, divided by the probability of

choosing it. All the rendered results in Section 6.6 are generated using this

algorithm.
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6.5.3 Final gathering

Given the discretized flux field inside the volume computed by the modular

transfer, we can now render it efficiently. We perform a standard Monte Carlo

path tracing algorithm with explicit direct illumination. However, when han-

dling the k-th scattering event on a light path at location x, we replace the phase

function by a uniform isotropic one. This is the second time we insert an isotropy

event to obtain a separable approximation to the path integral. This lets us stop

the recursive process and approximate the indirect illumination at point x as

Φm(i)/(4π|Ni|) where Φm(i) is the stored multiple-scattered flux value computed

by the modular transfer. The final gather computes all paths with less than k

scattering events using standard path tracing.

Finally, we choose the value of k as follows. As shown in Figure 6.11, for a

range of materials, we produced multiple renderings with changing k values.

The results indicate that for materials with random structures, such as felt, a k

value of 2 or 3 is sufficient. For structured materials with parallel shiny fibers

(such as the twill), a value of k = 6 produces high quality results, and our

approach still converges much faster than path tracing. Therefore, we picked

k = 6 for all our results.

6.6 Results

In this section, we first demonstrate the performance of our technique by com-

paring flux fields computed by our method, path tracing, and photon map-

ping. Afterwards we show renderings for a range of materials created with our

method.
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Figure 6.12: 2D slices of flux fields in non-empty voxels computed with path-
tracing (top) and MFT (bottom).

6.6.1 Flux field visualizations

Figure 6.12 shows the multiple-scattered flux fields obtained by path tracing

and our technique. The entire volume contains over one million blocks, and in

this figure we show 2D slices across 20 of them. The top of the figure shows

the reference Φgt generated by tracing thousands of paths for each non-empty

voxel, while the bottom shows the approximate Φm generated by tracing 50

million particles for the source flux and solving the modular transfer described

in Section 6.5.2. Our result matches the ground truth well.

6.6.2 Photon mapping comparisons

Figure 6.13 shows detail renderings generated by path tracing (the ground truth),

our technique (MFT), and photon mapping. Here we use k = 3, i.e. three path-

traced events precede the MFT or photon map lookup. The entire scene is a

single sheet of cloth with over one million blocks, of which a small patch (con-

taining 0.24% of all traced particles) is shown. Figure 6.13b is obtained by tracing

10 million particles for the source flux. Our method is much faster than path

tracing while providing good accuracy. Figure 6.13c is generated with photon

mapping with 100 million particles. Artifacts result from the stored photon den-
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(a) (b)

(c) (d)

Figure 6.13: Images rendered with (a) standard path tracing in 1.3 hours; (b)
MFT in 12 minutes (with 10M particles traced); (c) volume photon mapping in
20 minutes (with 100M photons stored); (d) volume photon mapping in 1 hour
(with a billion photons stored).

sity being insufficient to capture the yarn-level structures. In Figure 6.13d, we

show a photon mapping result using one billion photons.

6.6.3 Rendered results

Next, we show renderings of a variety of volumetric appearance models of

fabrics created with techniques introduced in Chapters 4 and 5. These models

often consist of trillions of micron-resolution (effective) voxels, making them

very challenging to render. In our experiments, we focus on demonstrating
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our technique over such highly complex volumetric models. We used a simple

lighting configuration and compared our results with those created by volume

path tracing. We implemented our system based on the Mitsuba physically

based renderer [42], and ran all our experiments on an Intel server equipped

with four Xeon X7560 eight-core CPUs.

Precomputation. When precomputing the transfer matrices required by MFT,

for each material, we pick a resolution such that every exemplar block has

around 1000 non-empty voxels and 500 patches. As previously mentioned, the

choice of this resolution does not depend on the actual data resolution of the un-

derlying volume. In our case, each cloth block (representing one yarn crossing)

contains about one million data voxels, and the final volumes in Figures 6.14

and 6.15 contain 2.5 × 1011 and 1.4 × 1012 effective voxels, respectively. Pre-

computation of a block takes roughly 4 hours, and storing the transfer matrices

(as OpenEXR images) takes about 20MB. We distributed the precomputation

tasks to Amazon Elastic Compute Cloud (EC2) by using between 25 and 80

c1.xlarge instances, where processing each exemplar block costs 2 USD. Note

that the matrices are purely determined by material properties. Thus, after a

one-time precomputation, we can use MFT to accelerate renderings of the mate-

rial under any lighting condition. Also, we use the same precomputation, which

was performed over rectangular blocks, when the volume is warped into draped

shapes with shell-mapping (Figures 6.1, 6.14 and 6.15). Furthermore, one set of

exemplar blocks may be used to synthesize models with very different structures

(such as the cloth with different weave patterns in Figure 6.1 and both rows of

Figure 6.15), amortizing the precomputation cost over a very large set of designs.
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Single-colored fabrics. We first show rendered results for three types of fabrics

(Figure 6.14) where the single-scattering albedo for each material stays constant

(namely all fibers have identical colors) and equals around 0.975 (for the bright-

est color channel). Our method achieved respectively 10.3×, 9.0×, and 12.8×

speedup for these materials. The top row contains renderings for felt, a thick

non-woven fabric with layers of disorganized fibers. The middle row shows

those for a twill fabric, conveying characteristic diagonal lines. Unlike felt, this

fabric contains well aligned fibers in two perpendicular directions which create

strong anisotropic highlights. The bottom row exhibits rendered images of vel-

vet with a visible surface composed of fibers sticking up from the base material,

creating a distinctive grazing-angle highlight. Each of the three results has 25

precomputed exemplar blocks which can be reused to synthesize the same kind

of material in arbitrary sizes.

Fabrics with complex designs. In addition, we created an exemplar database

with 120 blocks using the method from [112]. With such a database, fabrics with

complicated weave patterns can be constructed through synthesis. Since we

precompute the transfer matrices for each exemplar block, the precomputation

can be reused to render any synthesized cloth. Figures 6.1, 6.15 show renderings

with three designs generated with this single database where our approach

speeds up the renderings by 7.2×.

More information for images in Figures 6.14, 6.15 and 6.16 are available in

Table 6.2. The results show that path tracing suffers from very long light paths

because of the volume complexity and high albedo values. On the other hand,

using the MFT method, we terminate the path after 6 scatterings, which bounds

the maximal path length and yields significant speedups.
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Scene
Total Exemplar Precomp. Path Length Time Cost Speed

Blocks Blocks Time PT MFT PT MFT Up
Felt 250 000 25 100 44.1 7.4 144 14 10.3×

Twill 250 000 25 100 37.1 7.2 90 10 9.0×
Velvet 250 000 25 100 71.0 7.9 192 15 12.8×

Damask 1 350 000 120 480 65.8 7.2 108 15 7.2×
Wood 256 25 100 17.9 6.3 17 5.6 3.0×

Synthetic 625 25 100 23.6 6.9 6.6 1.6 4.1×

Table 6.2: Scene statistics. The table shows the number of blocks in the scene,
the number of exemplar blocks, the precomputation time for all exemplars (in
hours), average path length, and rendering time (in minutes) for path tracing
(PT) and our method (MFT). Felt, twill, and velvet correspond to Figure 6.14;
damask to both designs in Figure 6.15; wood and synthetic to Figure 6.16. The
MFT rendering time includes the portion spent on computing the source flux
Φs (by tracing particles from light sources), which is less than 2 minutes for all
our results. The Monte Carlo matrix inversion step takes less than 15% of the
rendering time for all scenes.

Materials beyond cloth. Finally, our technique can also be applied to non-cloth

materials, as long as they are formed using a small set of exemplar blocks. Fig-

ure 6.16 shows two such results. On the left, we show a piece of finished wood

represented with a micro-flake volume based on the data from [68]. The ren-

dered wood conveys characteristic anisotropic highlights. Our method captures

all these effects while filling in high-order scatterings accurately. On the right,

we show a synthetic volume with a fine, coral-like structure made of a solid tex-

ture provided by [54]. Our result matches the ground truth very well. Although

these datasets contain only a few million effective voxels, and are much less

complicated than the cloth volumes, our method still achieved 3− 4.1× speedup

over path tracing.
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MFT path-traced reference

Figure 6.16: Renderings of materials beyond cloth under different lightings:
(top) finished wood; (bottom) synthetic volume. Please see Table 6.2 for more
information.

6.7 Conclusion

In this chapter, we introduced a precomputation-based approach to accelerate

renderings of very complex volumetric materials built from sets of exemplar

blocks. These materials are slow to render using pure Monte Carlo techniques

and do not easily allow for diffusion approximations. Our algorithm separates

low-order and high-order scattering and approximates the latter using a modu-

lar flux transfer framework. Based on the observation that introducing diffuser

and isotropy events to long-enough light paths has little effect on accuracy, we

showed that those paths can be split into precomputed and runtime components.

The former can be evaluated by precomputing voxel-to-voxel, voxel-to-patch,
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and patch-to-patch transfers for each exemplar block. The precomputation cost

is amortized over many different lightings, shapes, and designs. An important

component of our solution is a Monte Carlo matrix inversion method to solve

the transfer problem with minimal storage cost; this means that our method has

similar scalability to path tracing, but effectively traces much shorter paths for

the same quality. Our results demonstrate a speed-up of more than an order of

magnitude for thick cloths. In addition, the method can be used for non-cloth

materials. We believe our algorithm could be directly used for high-quality

rendering in interior design or movie production.

One limitation of this work is that we require a new precomputation if the

exemplar blocks change their optical properties, such as single-scattering albedo.

In the future, we plan to extend our framework to permit precomputation with

material editing. Our Monte Carlo particle tracing based precomputation stage

is quite expensive, thus further optimizations would be very useful. We would

also like to explore heuristics for choosing the value of k adaptively, such as

ones based on a frequency analysis of the resulting error. Combining our ap-

proach with Lightcuts [97] or other algorithms may be an interesting direction.

Finally, we would like to push our approach to an even larger scale, for example,

rendering a crowd of clothed characters.
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CHAPTER 7

HIGH-ORDER SIMILARITY RELATIONS IN RADIATIVE TRANSFER

In this chapter, we switch gears and focus on radiative transfer theory, the

mathematical rules governing how light transports in translucent media (includ-

ing cloth).

We introduce to computer graphics similarity theory, which provides funda-

mental insights into the structure of the parameter space of the radiative transfer

equation (2.1). In addition, we develop a new algorithm to utilize this theory in

its general high-order form. This work has been published at ACM SIGGRAPH

2014 [113].

7.1 Introduction

Many real-world materials including marble, jade, and human skin exhibit dis-

tinctive appearances arising from subsurface scattering of light. Understanding,

simulating, and measuring this phenomenon has been an active research area in

computer graphics for decades.

The physics of subsurface scattering is normally modeled with the radiative

transfer framework [7]. The core of this framework is the radiative transfer

equation (RTE) which governs how frequently light scatters and how it gets redi-

rected or absorbed (when scattering occurs) via a set of scattering parameters.

The parameter space of the RTE contains infinitely many equivalence classes

such that different parameters in each class lead to identical solution radiance

fields, under the assumption that these radiance fields have bounded angular fre-

quencies. Similarity theory, introduced to applied physics by Wyman et al. [105],
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Figure 7.1: We introduce a new approach utilizing high-order similarity re-
lations, which can be used to accelerate Monte Carlo rendering of translucent
materials. (a) Reference path-traced rendering of a Corinthian capital made of a
translucent material with a complicated phase function. (b) Image rendered with
the same algorithm but using a reduced scattering coefficient and an isotropic
phase function: although a 3.6X speedup is obtained, the resulting accuracy is
poor (see the included relative error visualization with the color mapping shown
above the renderings). (c) Image rendered using the same reduced scattering
coefficient as (b) and a phase function provided by our method: with a slightly
higher speedup, significantly better accuracy is obtained. (d) Plots of the phase
functions used in (a, b, c). Our theory permits finding a tabulated function (the
orange curve) accurately reproducing the reference appearance.

studies this property by deriving a hierarchy of equivalence relations called “sim-

ilarity relations”. Higher-order similarity relations offer finer partitions of the

space, and parameters in the resulting equivalence classes can produce identical

radiance with higher frequencies.
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Previously, only a special case of the simplest order-1 similarity relation has

been used in computer graphics. Furthermore, given a set of scattering parame-

ters, computing an altered set adhering to (higher-order) similarity relations re-

mains a challenge, especially for the altered phase function which is not uniquely

determined by the relations.

In this chapter, we present a complete exposition of similarity theory and

introduce practical algorithms to utilize this theory in its general higher-order

forms. Our theoretical contributions include:

• Introducing to graphics the full derivation of similarity relations (Sec-

tion 7.3.1) and discussing their connection to diffusion theory (Sec-

tion 7.3.2).

• Developing novel algorithms to determine the existence of and to solve

for the parameters (including absorption/scattering coefficients and a tab-

ulated phase function) satisfying similarity relation of any given order

(Section 7.4).

Our theory can lead to practical applications in forward and inverse rendering of

translucent media. The presence of equivalence classes is a significant challenge

in inverse rendering. This is because different parameters can provide very

similar appearances, causing the optimization problem to be ill-conditioned.

Section 7.5 introduces a proof-of-concept method reparameterizing the search

space, so that gradient descent algorithms become much more effective in the

new space.

Forward rendering is our main application (Section 7.6). We develop a sim-

ple procedure that takes a set of scattering parameters and outputs an altered set

in a few seconds. Replacing the original parameters with the altered ones can
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accelerate Monte Carlo rendering of optically dense and forward-scattering me-

dia (over 3X speedups can be achieved for volume path tracing). A key benefit

offered by our method is that no changes need to be made to core rendering al-

gorithms: only material scattering parameters, which are inputs to the renderer,

are modified.

7.2 Overview

In this section, we first briefly revisit the basic concept of radiative transfer

and present a mathematical description of similarity theory. Then, we describe

the computational challenges for forward and inverse rendering of translucent

media and our plan to tackle these challenges.

Radiative transfer. The radiative transfer equation (2.1) describes that the di-

rectional derivative of the radiance field L is determined by its value via the

extinction coefficient σt, an integral of L at the same location via the scattering coef-

ficient σs and the phase function f , and the source term Q. In addition, σt = σa + σs

where σa is called the absorption coefficient. In the rest of this chapter, we assume

that the media is isotropic and has no self-emission. This causes f to become a

1D function of (ω · ω′) and Q to vanish, yielding

(ω · ∇)L(ω) = −σtL(ω) + σs

∫
S2
f(ω′ · ω)L(ω′) dω′. (7.1)

Note that anisotropic media [43] require f to be full 4D functions and are beyond

the scope of this chapter. In (7.1) and the rest of this chapter, we use h(·) to

indicate that h is a 1D function defined on [−1, 1] (for any h).
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Similarity theory. Theoretically, assuming the solution radiance L in the RTE

(7.1) is band-limited (in the spherical harmonics, or SH, domain), there exist

altered parameters σ∗t , σ∗s , and f ∗(·), such that the corresponding altered RTE

(ω · ∇)L(ω) = −σ∗tL(ω) + σ∗s

∫
S2
f ∗(ω′ · ω)L(ω′) dω′ (7.2)

has a solution which equals that of (7.1) exactly. Similarity theory [105] describes

the relations between the altered parameters and the original ones, which are

presented in Section 7.3. Based on these relations, the parameter space can be

partitioned into multiple equivalence classes. In practice, when the assumption

does not hold perfectly, parameters in one equivalence class produce approxi-

mately identical appearances.

Inverse rendering: challenges. Given the complicated and highly non-linear

relation between the scattering parameters and the resulting appearance, inverse

rendering is usually modeled as an optimization problem where the parameter

space needs to be explored locally [99, 35, 16, 31]. This process, however, can

be extremely expensive as the search space is often high-dimensional, and ex-

ploring it requires iteratively solving the forward problem, which is challenging

by itself. The presence of the equivalence classes makes the inverse problem

even more difficult as it creates ambiguities between different sets of parameters

which can cause the optimization to be ill-conditioned.

Inverse rendering: our approach. Similarity theory suggests the locations in

the parameter space where the ambiguities occur. Section 7.3.3 illustrates such

an example using a simple 2D space. Based on this understanding, we introduce

a proof-of-concept method (Section 7.5) which warps the space in a non-linear

manner so that it becomes much easier for gradient based methods to find good
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Solving for f ∗(·)

Figure 7.2: Our pipeline to speedup forward rendering of translucent media. It
takes the original scattering parameters as well as a user-specified α ∈ (0, 1) and
outputs the altered parameters.

solutions.

Forward rendering: challenges. Forward rendering of translucent materials

is our main application. It requires solving (7.1) which in general has no closed-

form solution, and accurate numerical solutions often involve Monte Carlo sim-

ulations. To render a normal sized object made of optically dense materials, such

as milk and marble, hundreds or thousands of subsurface scatterings need to be

simulated on each light path, yielding slow performance. Among such materi-

als, the highly forward-scattering ones are particularly difficult to handle. They

include phase functions that send light into very concentrated regions, causing

path tracing based algorithms to produce high noise, and photon mapping or

many-lights methods to require a massive number of photons or virtual lights

to avoid intense artifacts or energy loss.

Forward rendering: our approach. We tackle the challenge of rendering opti-

cally dense and forward-scattering materials using similarity theory. Particularly,
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we look for equivalent parameters σ∗t , σ∗s , f ∗(·) with σ∗t < σt because a smaller

extinction coefficient means fewer scattering events to simulate and less com-

putation required. The most basic version of this idea, which reduces σs and

sets f ∗(·) to isotropic, has been used in graphics but can result in poor accuracy

(Section 7.3.2).

Figure 7.2 previews the pipeline of our method. The user provides the orig-

inal scattering parameters σt, σs, f(·) as well as an extra parameter1 α ∈ (0, 1)

controling the tradeoff between performance and accuracy. The first component

of our pipeline computes the altered absorption and scattering coefficients based

on similarity theory (Section 7.3.1). The altered phase function f ∗(·), however, is

not directly given. Instead, similarity theory specifies the desired Legendre mo-

ments f ∗1 , f ∗2 , . . . of f ∗(·). The second component of the pipeline then numerically

solves for f ∗(·) as a tabulated function given those moments (Section 7.4).

Our approach is easy to implement (pseudocode is in Section 7.6.1) and

straight-forward to use: the user can simply replace the original scattering pa-

rameters with the altered ones (which are the outputs of our pipeline). The

base rendering method does not need to be changed. Thorough experimental

evaluations of our method are in Section 7.7.

7.3 Similarity theory

Similarity theory was originally introduced to applied physics by Wyman et al.

[105, 106]. It studies the equivalence classes of the RTE’s parameter space by

introducing a hierarchy of equivalence relations called similarity relations.

1In this chapter, we use α to denote the user-specified parameter (which equals the ratio
between the altered and the original scattering coefficients, as described in Section 7.4). In the
previous chapters, this symbol has been used to indicate the single scattering albedo σs/σt.
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Note that, given the original scattering parameters, the similarity relations do

not directly provide the values of all altered parameters, and computing these

values (the altered phase function in particular) is non-trivial. We introduce a

novel approach to solve for these parameters in Section 7.4.

In this section, we first present the full derivation of simialrity relations (Sec-

tion 7.3.1) following the original version proposed by Wyman et al. [105]. Then,

Section 7.3.2 discusses the connection between similarity theory and approaches

based on first-order approximations of the RTE (such as diffusion methods).

Finally, Section 7.3.3 shows an example of capturing the structure of a simple

RTE’s parameter space using the derived relations.

7.3.1 Derivation of similarity relations

We present the derivation (following [105]) of a set of relations between the

original parameters σa, σs, f(·) and the altered ones σ∗a, σ∗s , f ∗(·) such that the

original RTE (7.1) and its altered version (7.2) have identical solution radiance

L, based on the assumption that L has bounded directional frequency. The

resulting relations are in (7.18).

Rearranging the terms in the original RTE (7.1) yields

(ω · ∇)L(ω) + I(ω) = 0 (7.3)

where

I(ω) := σtL(ω)− σs
∫
S2
f(ω′ · ω)L(ω′) dω′.

Similarly, the altered RTE (7.2) can be rewritten as

(ω · ∇)L(ω) + I∗(ω) = 0. (7.4)
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Then having one solution L satisfying both (7.3) and (7.4) implies that for all

ω ∈ S2,

I(ω) = I∗(ω). (7.5)

To derive the similarity relations from (7.5), one can represent I(ω) and I∗(ω)

in SH and equate the corresponding SH coefficients. To write I(ω) in SH, the

radiance field L and the phase function f(·) need to be expanded, yielding

L(ω) =
∞∑
n=0

n∑
m=−n

amnY
m
n (ω), (7.6)

f(ω′ · ω) =
∞∑
n=0

2n+ 1

4π
fnPn(ω′ · ω)

=
∞∑
n=0

n∑
m=−n

fnY
m
n (ω)Ȳ m

n (ω′)

(7.7)

where Y m
n is the SH basis function, Pn is the Legendre polynomial of degree n,

fn = 2π

∫ 1

−1

f(t)Pn(t) dt (7.8)

is the n-th Legendre moment of f(·), and the bar superscript denotes complex

conjugation. The second equality in (7.7) follows the Addition Theorem [3]. For

heterogeneous materials, both amn and fn have spatial dependencies.
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Given (7.6) and (7.7), it holds that

I(ω) =
∑
n,m

σtamnY
m
n (ω) −

∫
S2

[∑
n,m

amnY
m
n (ω′)

][∑
i,j

σsfiY
j
i (ω)Ȳ j

i (ω′)

]
dω′

=
∑
n,m

σtamnY
m
n (ω) −

∑
n,m

∑
i,j

(
amnY

j
i (ω)σsfi

∫
S2
Y m
n (ω′)Ȳ j

i (ω′) dω′︸ ︷︷ ︸
= δni δmj

)

=
∑
n,m

σtamnY
m
n (ω)−

∑
n,m

amnY
m
n (ω)σsfn

=
∑
n,m

amnσtr,nY
m
n (ω)

where δij is the Kronecker delta which equals 1 if i = j and 0 otherwise. Then,

I(ω) =
∞∑
n=0

n∑
m=−n

amnσtr,nY
m
n (ω), (7.9)

I∗(ω) =
∞∑
n=0

n∑
m=−n

amnσ
∗
tr,nY

m
n (ω). (7.10)

where

σtr,n := σt − σsfn = σa + σs(1− fn),

σ∗tr,n := σ∗t − σ∗sf ∗n = σ∗a + σ∗s(1− f ∗n)

(7.11)

are called the reduced extinction coefficients of order n. Note that amn appears in

both (7.9) and (7.10) since I(ω) and I∗(ω) are assumed to share the same radiance

field L.

From (7.9) and (7.10), the SH coefficients of I(ω) and I∗(ω) can now be

equated, which leads to amnσtr,n = amnσ
∗
tr,n for all n ≥ 0 and −n ≤ m ≤ n.
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Namely,

amn(σtr,n − σ∗tr,n) =

amn[(σa − σ∗a) + (σs(1− fn)− σ∗s(1− f ∗n))] = 0. (7.12)

Since (7.12) needs to hold for all n and m, consider a special case where

n = m = 0. It holds that

a00 =

∫
S2
Y 0

0 (ω)L(ω) dω =
φ

2
√
π

(7.13)

where φ :=
∫
S2 L(ω) dω is the fluence. Because f(ω′ ·ω) and f ∗(ω′ ·ω), as functions

of ω′, are probability densities over S2, it holds that f0 = f ∗0 = 1. Then, (7.12)

becomes φ
2
√
π
(σa − σ∗a) = 0. Because φ is generally non-zero, this implies

σa = σ∗a. (7.14)

In general, for n ≥ 1, given (7.14), (7.12) becomes

amn[σs(1− fn)− σ∗s(1− f ∗n)] = 0. (7.15)

To ensure that (7.15) holds for any L (namely for arbitrary amn), we need to have

σs(1− fn) = σ∗s(1− f ∗n). (7.16)

Similarity relations. Wyman et al. [105] showed that the only solution adher-

ing to (7.14) and (7.16) for all n, m is the trivial one: σ∗a = σa, σ∗s = σs, and

f ∗(·) ≡ f(·). Thus, in general, there is no “perfect” similarity relation. However,

when L is band-limited in SH domain, we have

amn = 0 for n > N, −n ≤ m ≤ n (7.17)

128



where N is a constant capturing the maximal angular frequency. If N = 1, for

example, L is called linearly anisotropic. When (7.17) holds, (7.16) only needs to

be enforced for 1 ≤ n ≤ N , yielding the similarity relation of order N :

σa = σ∗a,

σs(1− fn) = σ∗s(1− f ∗n) for 1 ≤ n ≤ N.

(7.18)

In practice, (7.17) may not hold everywhere inside the medium. In this case, the

altered RTE (7.2) will have a solution radiance approximating that of the original

(7.1).

The Legendre moment constraints in lower-order similarity relations are sub-

sets of those in higher-order ones. Therefore, (7.18) essentially provides a hi-

erarchy of equivalence relations that partition the parameter space of a RTE with

different granularity.

Spatial dependency. Similarity relation (7.18) needs to be satisfied at every

location x (which has been dropped for notational convenience) within the ma-

terial volume. Namely, for heterogeneous materials where σs, σa, and f(·) are

spatially varying, the altered parameters σ∗s , σ∗a, and f ∗(·) should also have spa-

tial dependencies so that (7.18) is satisfied independently for each x.

Generalized forms. The similarity relations (7.18) force the absorption coeffi-

cient σa to remain unchanged. When σ∗a 6= σa, the solution radiance L to the

original (7.1) and the altered RTE (7.2) are normally not identical. Wyman et

al. [106] showed that if one weakens the requirement of identical L and only

asks for equal resulting fluence φ =
∫
S2 L(ω) dω, generalizations of (7.18) can be

obtained. In particular, the generalized order-1 and order-2 similarity relations are
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respectively

σaσtr,1 = σ∗aσ
∗
tr,1,

σaσtr,1σtr,2
σs(1− f2)

=
σ∗aσ

∗
tr,1σ

∗
tr,2

σ∗s(1− f ∗2 )
. (7.19)

When σ∗a = σa, (7.19) reduces to (7.18) with N = 1 and N = 2.

Since most graphics applications care about radiance L (which determines

an object’s appearance) instead of fluence φ, we focus on the standard similarity

relations (7.18) in the rest of this chapter. Please refer to Section A.2 for more

information on the generalized versions.

7.3.2 Discussion: relation to first-order methods

In many prior works [8, 25], it was common to set

σ∗a = σa, σ∗s = σs(1− f1), f ∗(ω′ · ω) = 1
4π
. (7.20)

It is easy to verify that the altered phase function f ∗(·) has f ∗1 = 0. Thus, σ∗s(1−

f ∗1 ) = σ∗s = σs(1− f1), and (7.20) satisfies the order-1 similarity relation.

The altered parameters in (7.20) are also used by diffusion methods [47, 2, 15]

where σ∗s is called the reduced scattering coefficient. In fact, the order-1 similarity

relation and the diffusion approximation share the same assumption that L is

linearly anisotropic (namely (7.17) holds with N = 1), so they offer similar levels

of accuracy. We present an alternative derivation of the diffusion equation (DE)

using this assumption in Section A.1.

On the other hand, methods based on first-order approximations, including

(7.20), have limited accuracy. These methods assume that the radiance field is lin-

early anisotropic and can perform poorly in optically thin or close-to-boundary

regions where the assumption is often violated. Furthermore, phase functions
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Figure 7.3: Equivalence classes of a 2D parameter space. White dots indicate
the reference parameter points: (0.9, 50) for the left plot and (0.5, 25) for the
right. Dashed lines contain all points belonging to the same equivalence class
(defined by the order-1 similarity relation) as the references. Low-error regions
on the error surfaces (in false color) match the predicted equivalence classes,
confirming the theory.

with similar first moments can lead to dramatically different appearances (ex-

amples are shown in Figures 7.1 and 7.9 as well as by Gkioulekas et al. [29]).

Unfortunately, first-order methods care only about the first moment of a phase

function and cannot capture all these varying appearances, as demonstrated in

Sections 7.7.2 and 7.7.3.

To our knowledge, there is no prior work in computer graphics which considers

higher-order similarity relations. In Section 7.4, we show how to solve for the

altered parameters satisfying the similarity relation of any given order.

7.3.3 Example: equivalence classes

We now illustrate the structure of the parameter space of a simple RTE and

discuss how such structure can be exploited to benefit forward and inverse

rendering of volumetric media.
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Consider a RTE with a fixed absorption coefficient and a Henyey-Greenstein

(HG) phase function [37]. Then its parameter space is 2D: one for the scattering

coefficient σs and the other for the HG parameter g. Because the first Legendre

moment of an HG function with parameter g is simply g itself, two parameter

points (g, σs) and (g′, σ′s) belong to the same equivalence class defined by the

order-1 similarity relation2 if σs(1− g) = σ′s(1− g′). Figure 7.3 shows the equiva-

lence classes of two reference parameters (0.9, 50) and (0.5, 25) plotted as dashed

lines.

To validate the equivalence classes defined by similarity theory, we created

multiple renderings of a homogeneous, unit-sized cube (under side lighting)

using different scattering parameters. Denote the image rendered with parame-

ters g and σs as I(g, σs). The insets in Figure 7.3 show images rendered with the

reference parameters. For each point (g, σs) in the space, define an error function

d(g, σs) := ‖I(g, σs)− I0‖2 (7.21)

where I0 is the image rendered with the reference parameters. The error surfaces

defined by d are visualized as plot backgrounds. We can see that the shapes of

low-error regions match the curves predicted by similarity theory well. Note

that the error values over the dashed lines are not exactly zero, since the equiv-

alence classes are defined based on the assumption that the radiance is linearly

anisotropic, which is normally not the case near boundaries.

Inverse rendering. The presence of these low-error regions causes inverse ren-

dering to be very challenging. One reason is that the shapes of these regions are

not convex, so that many optimization algorithms are not guaranteed to find

2Similarity relations beyond order-1 are not useful for this parameter space, as each equiva-
lence class would contain only a single point.
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a global optimum. Furthermore, within the low-error regions, the gradient is

fairly small and can be easily dominated by Monte Carlo or measurement noise.

Based on this understanding, Section 7.5 presents a simple method that repa-

rameterizes the search space, causing gradient based methods to be much more

effective.

Forward rendering. We can exploit the structure of the parameter space to

benefit forward rendering applications (Section 7.6). To render an object with

scattering parameters coming from the upper-right region of Figure 7.3, for

instance, we can instead use a set of parameters in the same equivalence class

but located at the bottom-left of the space, as both sets of parameters lead to

approximately the same appearance. By picking a smaller scattering coefficient,

the material’s optical density is reduced, causing light to scatter less frequently.

Consequently, fewer scattering events need to be simulated, and speedups can

be obtained.

7.4 Solving for altered parameters

Deriving the similarity relations (7.18) is only half the story. Applications such

as forward rendering require full sets of parameters: the values of σ∗a, σ∗s , and a

complete phase function f ∗(·). Unfortunately, only σ∗a = σa is given directly by

(7.18). The other relations, σs(1− fn) = σ∗s(1− f ∗n), are constraints.

To determine σ∗s , we consider the ratio between σ∗s and σs:

α := σ∗s/σs. (7.22)

In our forward rendering pipeline (Figure 7.2), this ratio is selected by the user.
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Given α, we have σ∗s = ασs, and the only parameter that remains unknown is

the altered phase function f ∗(·). For fixed order N , the Legendre moments of

f ∗(·) need to satisfy

f ∗0 = 1, f ∗i = 1− 1− fi
α

for 1 ≤ i ≤ N. (7.23)

Unfortunately, computing f ∗(·) given f ∗0 , . . . , f ∗N is non-trivial. As a phase func-

tion, f ∗(·) needs to be nonnegative. Discarding all moments higher than order-N

by setting f ∗(t) =
∑N

n=0
2n+1

4π
f ∗nPn(t), however, generally does not offer nonnega-

tivity. In addition, given the Legendre moment constraints, a nonnegative f ∗(·)

may not exist at all.

Wyman et al. [105] proposed a simple approach to provide f ∗(·). This method

does not allow N and α to be specified simultaneously. Instead, it takes N as

the user input and constructs a phase function f ∗(·) with f ∗N = 0. This method,

therefore, offers insufficient flexibility: in many applications including forward

rendering, we need to control both N and α to achieve good performance and

accuracy.

In this section, we introduce a general technique to find f ∗(·) for any given

N and α. Section 7.4.1 presents existence conditions of f ∗(·) given f ∗0 , . . . , f
∗
N .

Section 7.4.2 introduces an algorithm to solve for f ∗(·) numerically as a tabulated

(piecewise-constant) function.

7.4.1 Existence of the altered phase function

We now show the sufficient and necessary conditions for the existence of a non-

negative function f ∗(·) with its Legendre moments f ∗0 , . . . , f ∗N given.

For f ∗(·), its n-th monomial moment is γ∗n :=
∫ 1

−1
f(t)tn dt. Since Pn(·) is a poly-
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nomial of degree n, the Legendre moments f ∗0 , . . . , f ∗N and monomial moments

γ∗0 , . . . , γ
∗
N of f ∗(·) uniquely determine each other. Given these Legendre mo-

ments, the corresponding monomial moments can be computed by solving a

linear system (see Section A.3 for details). It follows that determining whether

f ∗(·) exists given its Legendre moments f ∗0 , . . . , f ∗N is equivalent to checking

its existence given the monomial moments γ∗0 , . . . , γ∗N . The latter is called the

truncated Hausdorff moment problem and has been studied in probability theory

[12]. In fact, f ∗(·) exists if and only if certain Hankel matrices formed using

the monomial moments are positive semi-definite. The following theorem pro-

vides a formal description of this result (see Theorems 4.1 and 4.3 in Curto and

Fialkow’s work [12] for the proof).

Theorem 1. Given γ∗0 , γ
∗
1 , . . . , γ

∗
N with γ∗0 > 0. For each n, let Un, Vn, and Wn be

n× n Hankel matrices such that

Un(i, j) = γ∗i+j−2, Vn(i, j) = γ∗i+j−1, Wn(i, j) = γ∗i+j (7.24)

for 1 ≤ i, j ≤ n. Then, a nonnegative function f ∗(·) with monomial moments

γ∗0 , γ
∗
1 , . . . , γ

∗
N exists if and only if:

• (odd case) when N = 2k + 1,

Uk+1 −Vk+1 < 0, Uk+1 + Vk+1 < 0 (7.25)

where “ < 0” denotes positive semi-definiteness of a matrix;

• (even case) when N = 2k,

Uk+1 < 0, Uk −Wk < 0. (7.26)

Based on Theorem 1, a function I F E X I S T S() can be easily implemented

which takes the desired Legendre moments f ∗0 , . . . , f ∗N and returns a Boolean

indicating if f ∗(·) exists.
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7.4.2 Computing the altered phase function

Although Theorem 1 allows us to efficiently check the existence of the altered

phase function f ∗(·), it does not provide a practical way to find one (if it exists).

Next, we introduce an algorithm to solve for f ∗(·) numerically. The resulting

f ∗(·) can then be used for physically-based rendering applications (Section 7.6).

We represent f ∗(·) as the linear combination of k basis functions

g1(·), . . . , gk(·):

f ∗(t) =
k∑
i=1

ci gi(t). (7.27)

Note that this can lose generality as the bases may not be able to represent all

nonnegative functions on [−1, 1]. The selection of k is discussed in the end of

this subsection.

Given (7.27) and (7.8), the n-th Legendre moment of f ∗(·) equals

f ∗n = 2π

∫ 1

−1

(
k∑
i=1

ci gi(t)

)
Pn(t) dt =

k∑
i=1

cigi,n (7.28)

where

gi,n := 2π

∫ 1

−1

gi(t)Pn(t) dt

is the n-th Legendre moment of gi(·).

Let f∗ := (f ∗0 f
∗
1 . . . f ∗N)T , c := (c1 c2 . . . ck)

T , and

G :=



g1,0 g2,0 . . . gk,0

g1,1 g2,1 . . . gk,1
...

...
...

...

g1,N g2,N . . . gk,N


,

then (7.28) with n = 0, 1, . . . , N can be rewritten as

f∗ = G c. (7.29)
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To summarize, if g1(·), g2(·), . . . , gk(·), which determine G, are given, we need

to solve for c such that f ∗(·) is nonnegative and the Legendre moment constraints

(7.29) are satisfied.

In our implementation, we pick the boxcar basis functions:

gi(t) :=


1 −1 + 2i−2

k
≤ t < −1 + 2i

k

0 otherwise
, (7.30)

for i = 1, 2, . . . , k. We choose this basis for its simplicity and flexibility. Under

(7.30), f ∗(·) becomes piecewise-constant, and its value in the i-th piece simply

equals ci. It follows that f ∗(·) is nonnegative if and only if c ≥ 0 (defined

component-wise). We then would like to find a nonnegative k-dimensional

vector c satisfying (7.29). This system, however, is normally under-constrained

since k, the number of pieces in f ∗(·), can be much greater than (N + 1), the

amount of Legendre moment constraints. Therefore, we regularize the system

by introducing a smoothness term Sc with S ∈ R(k−2)×k being a 1D Poisson

matrix

S =



−1 2 −1

−1 2 −1

. . .

−1 2 −1


.

This smoothness term captures the second derivative of f ∗(·), and we would like

‖Sc‖2 to be minimized. We choose the 2-norm since the solution c is robust to

the choice of k, and the resulting phase function f ∗(·) tends to send light into a

wide range of directions, which is a desirable feature.

Let Q := STS, then ‖Sc‖2
2 = cTQc, and we need to find the minimizer to the

following quadratic programming problem:

min
c

(cTQc) subject to c ≥ 0, G c = f∗. (7.31)

137



HG Parameter

S
c
a
tt
e
ri
n
g
 C

o
e
ff
ic

ie
n
t

 

 

S

P

R

T

0 0.3 0.6 0.9
 5

20

35

50

L
2
 E

rr
o
r

0

5

10

15

Reduced Scattering Coefficient

S
c
a
tt
e
ri
n
g
 C

o
e
ff
ic

ie
n
t

 

 

S

Q

R

T

0 25 50
 5

20

35

50

L
2
 E

rr
o
r

0

5

10

15

(a) (b)

Figure 7.4: Search spaces for an inverse rendering problem: (a) the original
space; (b) the reparameterized space. The plotted region in (a) maps to the area
enclosed by the dashed lines in (b). Using the original space, the stochastic gra-
dient descent (SGD) algorithm starting from point S is trapped at point P, which
is far from the real solution T. Using the reparameterized space, the algorithm is
able to find point R that is much closer to the real solution.

Since Q is positive semi-definite, the global optimum can be found in polynomial

time [55]. We solve (7.31) using the Gurobi Optimization Libraries [33].

Selecting k. Given f∗, if the existence condition (7.25) or (7.26) is violated, the

quadratic programming problem in (7.31) is guaranteed to be infeasible. How-

ever, the converse is not necessarily true: when (7.31) is infeasible, there could

still exist some f ∗(·) which cannot be represented using the k basis functions

g1(·), g2(·), . . . , gk(·). In this case, we need a larger set of bases. One possibility to

determine the value of k is to start with some relatively small k0 and double it

whenever (7.31) is infeasible, but there should be a solution (according to Theo-

rem 1). In practice, however, we found that simply setting k = 360 is sufficient

to find the solutions in all our experiments.
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7.5 Application: inverse rendering

In this section, we first describe an inverse rendering problem which we believe

is a good example to demonstrate the practical usefulness of similarity theory.

Then, we introduce a reparameterized search space in which gradient descent

algorithms converge to a good solution much faster.

The problem. Consider the problem of acquiring the material parameters of

a cube made of a scattering medium. Given a photograph of the cube lit by an

area light from the side (identical to the setting used in Section 7.3.3), we assume

that the cube has a HG phase function and its absorption coefficient σa is given.

The goal is to find the scattering coefficient σs and HG parameter g.

Our solution. Given the highly complicated and non-linear relation between

the parameters and the resulting rendered image, exact analytical solutions do

not exist for this problem. Instead, we use the error function d defined in (7.21)

with I0 set to the input image, and solve for g, σs such that the error is minimized.

This optimization problem can be solved using the stochastic gradient descent

(SGD) algorithm. The nondeterminism is caused by the fact that the gradients

need to be obtained through Monte Carlo simulations and can be noisy.

Unfortunately, the use of a relatively low-frequency (soft) lighting results in

large regions where d(g, σs) is close to zero (as shown in Figure 7.3), and the

gradient values within these regions are very small and can be dominated by

Monte Carlo or measurement noise. Consequently, after hitting this region, it

becomes very difficult for SGD to make further progress. Figure 7.4-a shows

such an example in which I0 is generated using parameters at point T. If we
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choose point S as the initial guess and execute SGD, the solution point moves to

the low-error region (indicated in purple) very quickly, but then gets “trapped”

there. Figure 7.5-b demonstrates that the solution (point P) found by this process

generalizes poorly to high-frequency (hard) lighting conditions.

To address this problem, we reparameterize the search space (Figure 7.4-b) by

replacing the horizontal axis by the reduced scattering coefficient σ′s := (1− g)σs.

Under this reparameterization, both axes have the same units, and the error

surface becomes significantly more regular (Figure 7.4-b). To search for the

solution in the new space, we perform two one-dimensional SGDs. First, we

fix σs and look for σ′s that minimizes the error. Since each σ′s corresponds to

an equivalence class given by the order-1 similarity relation, this step allows

us to select a class with minimal error. Then, we search for the best parameter

point within this class by keeping σ′s fixed and performing another 1D search to

find the best σs. Figure 7.4-b shows an example starting from point S (the same

initial guess as in Figure 7.4-a) where the first 1D search finds Q and the second

returns R. Figure 7.5-c shows that this new solution matches the ground truth

better under both the original (low-frequency) and the novel (high-frequency)

lighting.

7.6 Application: forward rendering

Optically dense and forward-scattering materials are very common in the real-

world [25, 31], but they are challenging to render. Our main application is to

offer speedups to Monte Carlo rendering of these materials without modifying

the core rendering algorithms. The basic idea is to find altered parameters with

σ∗s < σs (namely, with α < 1), so that fewer scattering events need to be handled.
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Figure 7.5: Images rendered using the real solution (a) as well as solutions
found by executing SGD on the original search space (b) and the reparameterized
one (c). Visualizations of per-pixel relative error (using the color mapping in
Figure 7.1) are included in (b, c). The images in the top row are used during
the optimization process, and those in the bottom with a novel lighting are for
validation. The solution found using the reparameterized space shown in (c)
leads to better results in both configurations.

We introduce a practical algorithm (Algorithm 7.1) based on the theory intro-

duced in Sections 7.3 and 7.4. To use this algorithm, the user can simply input the

original scattering parameters and an extra number α which controls the balance

between performance and accuracy, and the algorithm outputs a set of altered

parameters corresponding to an optically thinner and less forward-scattering

material. Rendering images using these altered parameters (without modifying

the renderer) costs only a fraction of the computation required to render with

the original ones. If the original parameters are spatially varying, the algorithm

needs to be performed at each spatial location (or for each homogeneous region).

Next, we provide a detailed description of our technique: Section 7.6.1
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presents an overview of the method (whose pipeline has been previewed in

Figure 7.2); Section 7.6.2 describes the practical aspects of the user-specified pa-

rameter α; Section 7.6.3 introduces an “overfitting” problem and discusses how

to avoid it. Detailed experimental evaluations of our technique are in Section 7.7.

7.6.1 Overview

Given the original scattering parameters σa, σs, f(·) and the user-specified pa-

rameter α, our method sets σ∗a = σa and σ∗s = ασs (line 2 of Algorithm 7.1). Then,

we determine the order N of the similarity relation to satisfy. Greater N nor-

mally provides better accuracy but may lead to unsatisfiable constraints. Thus,

we use the I F E X I S T S() routine implementing Theorem 1 (line 6) to find the

highest order N of which the similarity relation is satisfiable (lines 4 to 10). In

practice, we bound N with N0 = 5 (line 5) because our experiments indicate that

going beyond this order does not provide observable improvement for resulting

quality.

Occasionally, higher-order relations (greater N ) yield worse accuracy, and

we call this problem “overfitting”. This is another reason that we pick N0 = 5

as relations beyond this order tend to overfit. Section 7.6.3 presents a simple

method to reject the overfitting results (line 14 of Algorithm 7.1).

Algorithm 7.1 contains the pseudocode of the entire pipeline. Despite the

sophistication of the underlying theory, the algorithm itself is very easy to im-

plement.
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Algorithm 7.1 Computing the altered scattering parameters.
1: function C O M P U T E PA R A M E T E R S(σa, σs, f(·), α)
2: σ∗a ← σa, σ∗s ← ασs
3: Compute f ∗1 , . . . , f ∗N0

using (7.23)
4: N ← 1 . Compute the order N
5: while N < N0 do
6: if not I F E X I S T S(1, f ∗1 , . . . , f ∗N+1) then . Theorem 1
7: break
8: end if
9: N ← N + 1

10: end while
11: repeat . Estimate f ∗(·) numerically
12: Solve the order-N version of (7.31) to obtain f ∗(·)
13: N ← N − 1
14: until f ∗(·) is NOT overfitting . Section 7.6.3
15: return σ∗a, σ∗s , f ∗(·)
16: end function

7.6.2 User-specified parameter

We now describe the way in which the user-specified parameter α in Algo-

rithm 7.1 affects performance and accuracy, and discuss how to pick the value

of this parameter properly.

Balancing performance and accuracy. In practice, the parameter α controls the

tradeoff between performance and accuracy: small α offers good performance

but potentially poor accuracy; large α provides good accuracy but at the cost of

slower performance.

When σ∗a � σ∗s (namely the single-scattering albedo is high), it holds that

α = σ∗s/σs ≈ (σ∗s + σ∗a)/(σs + σa) = σ∗t /σt. Therefore, along a unit distance

within the altered material, the expected number of scattering events is roughly

a factor α of that within the original material. For Monte Carlo methods where

each scattering event is explicitly simulated, this usually means that α is linearly
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related to the rendering time.3 Experimental results demonstrating this effect

are in Section 7.7.1.

Picking α. Although α can theoretically take any value in (0, 1), not every

value in this range leads to high-quality results. Assuming that the original

material is forward-scattering (f1 > 0), we found that the resulting accuracy

decreases rapidly when f ∗1 < 0. So we require f ∗1 ≥ 0 which implies

α ≥ 1− f1. (7.32)

For objects with optically thin regions, relatively large α values are required

to produce high-quality results. We observed that setting α = max(0.3, 1 − f1)

worked quite well for all our experiments, even under conditions that are highly

unforgiving to errors, such as back lighting. To fine-tune this parameter for

greater speedups, a small number of test renderings can be performed as in Fig-

ure 7.7 but using a low resolution and a small number of random samples, so that

it introduces little overhead and the resulting α can be reused for high-quality

renderings or generating animated sequences. In this case, we suggest starting

with a smaller α value such as max(0.1, 1− f1) and increasing α iteratively until

the test renderings converge visually.

3With the presence of Russian roulette, the expected number of scattering events can be
bounded, which may reduce the rendering time for large α and makes the relation between α
and the rendering time more complicated. Because performing Russian roulette can introduce a
great amount of noise when the single-scattering albedo σs/σt is close to 1, how to do it properly
is non-trivial and beyond the scope of this work. Thus, we did not use this technique when
creating our renderings.
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7.6.3 Overfitting

Since overfitting does not happen very frequently and normally only causes sub-

tle visual differences, we use a simple method to determine whether a solution

f ∗(·) is likely to overfit (based on its “support”) and reject the overfitting solu-

tions. Examples of overfitting are in Section 7.7.2 (Figure 7.8) and Section A.5

(Figure A.3).

Given a phase function f(·), we define its (normalized) support nz(f) to be a

fraction between 0 and 1 that equals the portion of the domain where f(·) is

greater than zero. Namely,

nz(f) :=
|{t : f(t) > 0}|

2
.

For a tabulated phase function f ∗(t) with k bins, nz(f ∗) = k′/k where k′ is the

number of bins in which f ∗(t) is positive.

Intuitively, to approximate a translucent material with an altered one where

scattering occurs less frequently, one needs to allow light to scatter into a wider

range of directions. Our experiments indicate that given the moment constraints

in (7.29), solution phase functions with larger supports provide better results.

Therefore, we regularize f ∗(·) by minimizing the 2-norm of the smoothness term,

which favors support instead of sparsity, in Section 7.4.2.

On the other hand, for fixed α, the altered phase function needs to be more

concentrated (namely, to have smaller support) for satisfying higher-order simi-

larity relations. Occasionally, these relations become barely satisfiable, resulting

in phase functions with very limited supports that tend to overfit.

To remedy this problem, we threshold the support of altered phase func-

tions. Given the original phase function f(·), if the altered phase function f ∗(·)
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Figure 7.6: The rendering quality scores (evaluated using the HDR-VDP-2
metric) and the execution times when changing the value of α. Data points
on the purple curves marked with ‘b’, ‘c’, and ‘d’ respectively correspond to
renderings in Figure 7.7-bcd.

has nz(f ∗) < β nz(f) for some constant β ∈ (0, 1], we reject it (line 14 of Algo-

rithm 7.1). In our experiments, we used β = 0.65.

7.7 Experimental results

In this section, we first show how the choice of α in Algorithm 7.1 balances

performance and accuracy (Section 7.7.1). Next, Section 7.7.2 demonstrates that

considering similarity relations beyond order-1 can provide much better accu-

racy for complex phase functions. Then, we show that higher-order analysis

is required to capture perceptually significant cues proposed by Gkioulekas et

al. [29] (Section 7.7.3). Finally, Section 7.7.4 exhibits rendered results for a va-

riety of translucent media. All our renderings are created using the Mitsuba

physically-based renderer [42].
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(a) Reference (b) α = 0.05
350 minutes 44 minutes, Score: 66.49

(c) α = 0.1 (d) α = 0.2
63 minutes, Score: 90.94 103 minutes, Score: 98.39

Figure 7.7: Renderings of a heterogeneous dragon: (a) ground truth; (b, c, d)
renderings using the altered parameters generated using Algorithm 7.1 with
different α values. As in Figure 7.1, the relative error visualizations are included.

7.7.1 Performance versus accuracy

We now show how the choice of α affects the performance of Monte Carlo path

tracing and the resulting accuracy through experiments.

We created two scenes each of which contains a translucent object lit under

high-frequency environment lighting [14]. Both objects have HG phase functions

with g = 0.95, and the sizes of these objects are several hundreds times the mean

free path. Then, we generated 7 sets of altered parameters using Algorithm 7.1

with α ranging from 0.05 to 0.75.

Figure 7.6 shows the rendering quality (evaluated using the HDR-VDP-2 per-

ceptual metric [66] where a higher score means better quality) and the execution

time (using standard volume path tracing) as functions of α. Note that, in prac-
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tice, the speedup does not exactly equal 1/α as the rendering time is affected

by many factors varying among different α values, such as cache performance

(which is higher for greater α since the rendering algorithm tends to access data

with better locality).

Figure 7.7 shows some of the rendered images corresponding to the purple

curves in Figure 7.6. More renderings are presented in Appendix A (Section A.4).

We can see that when α = 0.05, while a 8.0X speedup can be achieved, the

resulting accuracy is unsatisfactory (Figure 7.7-b). On the other hand, with

α = 0.1 or 0.2 (which respectively offer speedups of 5.5X and 3.4X), significantly

better accuracy can be obtained (Figure 7.7-cd).

7.7.2 Higher-order similarity relations

Although first-order approximations work adequately for simple phase func-

tions (such as single-lobe HG), they do not have sufficient representative power

to capture higher moments of f(·).

We took a phase function proposed by Gkioulekas et al. [29] which is a linear

combination of two distributions:

f(cos θ) = 0.9 HG(0.95, cos θ) + 0.1 vMF(−75, cos θ) (7.33)

where HG(g, ·) and vMF(κ, ·) denote the HG function with parameter g and the

von Mises-Fisher distribution with parameter κ, respectively. Then, we solved

the quadratic programming problem in (7.31) to construct three altered versions

of (7.33) adhering to the order-1, order-4, and order-5 similarity relations, respec-

tively. The first Legendre moments of these altered phase functions are all zero.

Figure 7.8-a plots (7.33) and its altered versions.
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Figure 7.8-bcde contains a homogeneous dragon rendered using these phase

functions. We can see that the accuracy offered by the order-1 version (Figure 7.8-

c) is not ideal as it is not able to capture higher-order features of the original

phase function. The renderings produced using the order-4 version (Figure 7.8-

d), on the other hand, match the ground truth very well. The order-5 version (the

orange curve in Figure 7.8-a) has a fairly low support and does not generalize to

different lighting conditions as well as the order-4 one (Figure 7.8-e), although

the visual difference is subtle. Thus, this solution is overfitting and will be

rejected by Algorithm 7.1 (which instead returns the order-4 version). Please

refer to Appendix A for more examples on overfitting.

7.7.3 Spanning the 2D perception space

Next, we evaluate our method on a family of phase functions [29] spanning a 2D

perception space. The two axes of this space capture the optical density (vertical)

and the level of “glass-like” appearance (horizontal).

We picked 40 representatives from this family and rendered an image for

each of them (with the absorption and scattering coefficients fixed). Figure 7.9-c

shows two of these renderings. Then, we applied classical multidimensional

scaling (MDS) to create a 2D embedding of the renderings where a linear trans-

form T assigns each image a 2D coordinate. The blue squares in Figure 7.9-ab

illustrate this 2D embedding.

Next, for each phase function, we computed an altered set of parameters sat-

isfying similarity relations up to order-5 (using Algorithm 7.1) and rendered an

image accordingly. Two of these rendered images are in Figure 7.9-d. Then, we

projected those images into the previously created 2D space (using the same op-
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erator T ). Figure 7.9-a shows that the projections can well maintain the structure

of the original embedding. The small offsets between corresponding points in

the two embeddings cause little visible difference, and some of them are caused

by the Monte Carlo noise.

On the other hand, if we use a configuration which satisfies only the order-1

relation, the resulting renderings are missing important visual cues (as illus-

trated in Figure 7.9-e), causing their projections to collapse to a 1D line (Fig-

ure 7.9-b).

Figure 7.9 demonstrates that higher-order analysis is crucial to accurately

capture perceptually significant visual cues. Section A.6 contains all the images

used to create the three embeddings in Figure 7.9.

7.7.4 Rendered results

Next, we demonstrate that the altered scattering parameters generated by Algo-

rithm 7.1 produce appearances that accurately match the ground truth under a

variety of scene configurations.

Figures 7.1 and 7.10 exhibit rendered images created using volume path

tracing. Each reference rendering contains an object with a spatially invariant

phase function. Consequently, only one altered version needs to be computed for

each result, which takes less than a second using our MATLAB implementation

of Algorithm 7.1.

Figure 7.1 contains a Corinthian capital made of a homogeneous material

with a complicated phase function (the one marked as ‘A’ in Figure 7.9). It

also has a refractive interface modeled using the microfacet model [98]. Altered
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parameters generated by our method offer a 3.7X speedup, and the resulting

images match the ground truth very well.

In the first row of Figure 7.10, we show a sculpture made of a highly heteroge-

neous material where the white regions are about 5 times as dense as the green

ones, which is easily visible under back lighting as shown in (a). The sculpture

has the complex phase function described in (7.33) and a rough dielectric inter-

face. Our method offers a 2.7X speedup, and the results match the ground truth

very well in both the thick and the thin regions.

The second row of Figure 7.10 contains renderings of a highly scattering

smoke volume which has a HG phase function with g = 0.95. Parameters pro-

vided by our method, which satisfy the order-5 similarity relation, lead to a 3.5X

speedup while maintaining good accuracy even at highly thin regions.

In the third row, we show rendered images of a homogeneous bust made of

a material with a complicated phase function and a rough dielectric interface.

Parameters provided by our method speeds up the rendering process by 3.4X,

and the resulting images match the reference quite well.

7.8 Conclusion

In this chapter, we present a complete exposition of similarity theory, providing

fundamental insights into the structure of the RTE’s parameter space. Further-

more, we develop a novel approach to solve for the altered parameters satisfying

the similarity relation of any given order. Since the altered phase function is not

fully specified by the relations, we present the sufficient and necessary condi-

tions for its existence and introduce a numerical algorithm to find one (when it
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Figure 7.8: A complicated phase function and its three altered versions respec-
tively satisfying the order-1, order-4, and order-5 similarity relations are plotted
in (a). Renderings of a homogeneous dragon (using the plotted phase functions)
under side lighting (left) and front lighting (right) are in (b, c, d, e). The order-1
version yields poor accuracy; the order-5 version works adequately but not as
well as the order-4 one under both lighting conditions.
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original
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original

higher orders

(a) (b)

A A A

B B B
(c) Reference (d) Higher-Order (e) Order-1

Figure 7.9: 2D embeddings: (a) altered parameters satisfying up to order-5
similarity relations can well maintain the structure of the original embedding; (b)
satisfying only the order-1 relation causes the projections to collapse to a 1D line.
The dashed lines in (a, b) connect the projections of images rendered with the
original and the altered parameters. The remaining columns show renderings of
two phase functions (marked with A and B) which have similar first moments: (c)
reference renderings, (d, e) images rendered using altered parameters adhering
to higher-order relations and the order-1 relation, respectively. As demonstrated
in (e), first-order approximations do not have sufficient representative power to
distinguish these phase functions (such as A and B), causing them to be mapped
to similar locations in (b).
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exists) that can produce high-quality renderings.

We use two applications, forward and inverse rendering of translucent me-

dia, to demonstrate the practical utility of our theory. For inverse rendering, we

present a reparameterized search space to overcome the challenges caused by

the presence of equivalence classes. For forward rendering, our main applica-

tion, we develop an approach (Algorithm 7.1) to offer speedups to Monte Carlo

rendering of optically dense and forward-scattering media without having to

modify the core rendering algorithms. Despite the sophistication of the theory,

our method is very easy to implement and introduces negligible overhead to the

full rendering pipeline.

There are many areas of future work. For inverse rendering, we would like

to study how similarity theory can improve solving material appearance acqui-

sition problems with high-dimensional search spaces on real data. For forward

rendering, we plan to explore heuristics for choosing the value of α adaptively,

which is a generalization of the hybrid framework, so that greater speedups can

be obtained. In addition, the phase functions used in our results have no spa-

tial variation. For spatially varying phase functions, computing many altered

versions can be costly, and interpolating them without violating the similar-

ity relation constraints is a non-trivial problem. Thus, we intend to develop

approaches to efficiently compute and properly interpolate spatially varying

altered phase functions. Finally, for the theory, we would like to investigate

how the generalized similarity relations, such as (7.19), could benefit computer

graphics applications.
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CHAPTER 8

CONCLUSION

Fabrics are one of the most common materials in our everyday lives. Model-

ing and rendering them with high fidelity can benefit not only computer graph-

ics but also other industrial applications including textile design, retail and en-

tertainment.

This thesis has brought a new level of realism to computer generated imagery

of fabrics. Our contributions include:

• A fundamentally new approach to build volumetric appearance models

for fabrics with micron-resolution (Chapter 4). We have demonstrated that

by acquiring and explicitly modeling fiber-level details, fabric renderings

with unprecedented visual quality can be obtained.

• A structure-aware synthesis algorithm that creates high fidelity models

with user-specified weave patterns (Chapter 5). This approach allows pre-

viewing general textile designs before physically constructing them.

• A precomputation based algorithm that accelerates the rendering of our

micron-resolution fabric models by an order of magnitude (Chapter 6),

significantly improving their practical usefulness.

In addition, we have made a theoretical contribution by introducing (high-

order) similarity theory to computer graphics (Chapter 7) which provides sig-

nificant insights on the structure of the parameter space of translucent media.

We have also developed a practical algorithm to utilize this theory in its most

general form and benefit both forward and inverse rendering of translucent

media.
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8.1 Future research directions

Reproducing and predicting the appearance of complex materials has long been

a grand challenge. In this dissertation, we have taken one step forward by

introducing new approaches in predictive appearance modeling and efficient

rendering of fabrics as well as in general light transport theory. We believe that

these techniques can inspire future research that has the potential to significantly

benefit applications in not only graphics but also many other fields such as

industrial design and architecture.

Appearance Modeling and Fabrication

High-quality models capturing how light interacts with a material are essential

to reproducing and predicting its appearance. Unfortunately, many complex ma-

terials are not handled well enough with existing methods. Thus, it is necessary

to explore new means to model light transport in those materials.

Appearance fabrication. Recently, bringing objects from the virtual world to

reality using manufacturing techniques such as 3D printing has been an active

research area. Thanks to the advances of those techniques, we are allowed to con-

trol not only the geometry but also the appearance of a fabricated object. How-

ever, building physical objects with user-specified appearance while respecting

various constraints from the manufacturing process remains challenging. This

problem may be tackled by introducing appearance models with parameters

meaningful to the fabrication process and deriving new algorithms to efficiently

solve for the parameter values.
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Appearance acquisition. We cannot model a material’s appearance without

knowing precisely how it appears. Namely, we need to acquire the appear-

ance under calibrated configurations. This, however, is not easy: brute-force

approaches often require expensive hardware such as gonioreflectometers or

specialized cameras, and such acquisition processes can take many hours, if

not days. Therefore, new acquisition systems that are both cost-efficient and

offer great accuracy need to be designed. Such systems can be very useful for

numerous applications in computer graphics and vision.

Appearance models. Based on appearance measurements, we can derive data-

driven models. These models need to be compact and easy-to-evaluate, so that

they can be efficiently used by state-of-the-art rendering algorithms. Since the

measurements usually include large amounts of data (due to the development

of digital photography), how to compress the measured appearance data needs

to be investigated. Alternatively, models that are not limited to one kind of

material but generalize to a large variety of them are of great value. Comparing

to the data-driven ones, these models normally build upon physical principles

of light-medium interaction.

Automated model creation. Having the appearance models is of limited prac-

tical value unless we have algorithms to instantiate them. Namely, for the new

appearance models that we would like to develop, it is important to also build

efficient algorithms to create model data while requiring minimal amount of

user effort. One key problem we will need to solve is “inverse rendering”: find-

ing proper model parameters which yield desired appearance. This boils down

to solving challenging optimization problems in which certain quantities (such
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as the radiance) can only be estimated using Monte Carlo simulation.

Realistic Rendering

Efficient and easy-to-control algorithms are essential for utilizing appearance

models. Unfortunately, extremely challenging problems remain. Furthermore,

as new appearance models are developed, new rendering problems emerge.

Efficient rendering algorithms. Photo-realistic rendering has long been com-

putationally intensive: correctly simulating light transport in large scenes re-

quires great amount of computation. This is even more true now due to the

ever-increasing complexity of both object geometries (3D models) and materi-

als. This problem could be addressed in two complementary manners. First,

for materials with characteristic structures, specialized approaches can be de-

veloped to exploit them and improve performance. Second, general methods

approximating the radiative transfer process can be derived.

Interactive material editing. Getting interactive feedback is critical to many

industrial design applications. Unfortunately, realistic rendering algorithms

in general do not offer this level of performance. Thus, algorithms handling

material changes interactively are worth investigating. One possibility is to

precompute and store light transport information while symbolically carrying

the material related parameters on the fly. Naı̈ve implementations of this idea,

however, normally yield unacceptable amount of precomputation or storage.

Thus, we will need to answer the questions on how to represent and store the

precomputed information, and how to use them in the run-time for efficient

simulation of light transport.

159



APPENDIX A

APPENDIX FOR CHAPTER 7

A.1 Derivation of the diffusion equation

In this section, we present an alternative derivation of the diffusion equation

(DE) based on the same assumption taken by the order-1 similarity relation: the

radiance field L is linearly anisotropic, namely

amn = 0 for all n > 1. (A.1)

We first rewrite the RTE (7.1) in a series of integrated forms (Section A.1.1). Then,

we present in Section A.1.2 the order-0 and order-1 versions of the integrated

RTE and simplify them based on the assumption (A.1). Finally, we combine the

results from Section A.1.2 to obtain the DE (Section A.1.3).

A similar derivation has been proposed by Wyman et al. [106] to obtain the

generalized similarity relations described in Section A.2.

A.1.1 Integrated RTE

Let

ωi1i2...in :=
n∏
j=1

ωij

where ωij denotes the ij-th component of ω, which is a 3-vector (so ij ∈ {1, 2, 3}

for all j). In addition, we define the integrated forms of the three terms (includ-
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ing the source term Q) appearing in the RHS of the RTE (7.1):

φi1i2...in :=

∫
S2
ωi1i2...inL(ω) dω, (A.2)

χi1i2...in :=

∫
S2

∫
S2
ωi1i2...inf(ω′ · ω)L(ω′) dω′ dω, (A.3)

Qi1i2...in :=

∫
S2
ωi1i2...inQ(ω) dω. (A.4)

An integrated version of the RTE (7.1) can then be obtained by multiplying

ωi1i2...in and integrating over S2 on both sides, yielding

3∑
j=1

∂jφji1...in = −σtφi1...in + σsχi1...in +Qi1...in (A.5)

where ∂i denotes ∂
∂ωi

.

A.1.2 Order-0 and order-1 versions

We now write down the order-0 and order-1 versions of the integrated RTE (A.5)

and simplify them based on (A.1).

Order-0. The order-0 version of (A.5) is

3∑
j=1

∂jφj = −σtφ+ σsχ+Q(0) (A.6)

where Q(0) :=
∫
S2 Q(ω) dω. Since

χ =

∫
S2
L(ω′)

∫
S2
f(ω′ · ω) dω dω′ =

∫
S2
L(ω′) dω′ = φ,

(A.6) simplifies to
3∑
j=1

∂jφj = −σaφ+Q(0). (A.7)
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Order-1. The order-1 version of (A.5) is

3∑
j=1

∂jφji = −σtφi + σsχi +Qi. (A.8)

Due to (A.1), it holds that

χi =

∫
S2

∫
S2
ωif(ω′ · ω)L(ω′) dω′ dω

=
∞∑
n=0

n∑
m=−n

1∑
i=0

i∑
j=−i

fnaji(∫
S2
ωiY

m
n (ω)

∫
S2
Ȳ m
n (ω′)Y j

i (ω′) dω′︸ ︷︷ ︸
= δni δmj

dω

)

=
1∑

n=0

n∑
m=−n

fnamn

∫
S2
ωiY

m
n (ω) dω

= f1

1∑
m=−1

am1

∫
S2
ωiY

m
1 (ω) dω

(A.9)

where the last equality follows the fact that
∫
S2 ωiY

0
0 (ω) dω = 0 for all i ∈ {1, 2, 3}.

Similarly, we have

φi =

∫
S2
ωiL(ω) dω =

1∑
m=−1

am1

∫
S2
ωiY

m
1 (ω) dω. (A.10)

From (A.9) and (A.10), we know that

χi = f1φi. (A.11)

It is easy to verify that for all i1 and i2,
∫
S2 ωi1i2Y

0
0 (ω) dω = 2

√
π

3
δi1i2 and∫

S2 ωi1i2Y
m

1 (ω) dω = 0. Thus,

φi1i2 =

∫
S2
ωi1i2L(ω) dω = a00

2
√
π

3
δi1i2 .

Note that a00 =
∫
S2 Y

0
0 (ω)L(ω) dω = φ

2
√
π

, we have

φi1i2 =
φ

3
δi1i2 . (A.12)
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Substituting (A.11) and (A.12) into (A.8) leads to

1

3
∂iφ = −σtr,1φi +Qi (A.13)

where σtr,1 = σt − f1σs follows the definition in (7.11).

A.1.3 Diffusion equation

In this subsection, we show that the DE can be obtained easily from the inte-

grated RTE (A.5) in its simplified order-0 (A.7) and order-1 (A.13) forms.

Let

E :=

∫
S2
ωL(ω) dω =


φ1

φ2

φ3

 , Q(1) :=


Q1

Q2

Q3

 ,

and κ := (3σtr,1)−1. Then (A.7) and (A.13) can be rewritten as

∇ · E = −σaφ+Q(0), (A.14)

E = 3κQ(1) − κ∇φ (A.15)

where∇· is the divergence operator and∇ is the gradient operator. Substituting

(A.15) into (A.14) yields

∇ ·
(
3κQ(1) − κ∇φ

)
= 3κ∇ ·Q(1) −∇ · (κ∇φ) = −σaφ+Q(0).

Namely,

−∇ · (κ∇φ) + σaφ = Q(0) − 3κ∇ ·Q(1), (A.16)

and (A.16) is known as the diffusion equation.

163



A.2 Generalized order-1 similarity relation

The similarity relations (7.18) requires σ∗a = σa to ensure that the altered RTE (7.2)

has the same solution radiance field L as the original (2.1). However, if we relax

this equal-radiance constraint and only ask for the same fluence φ =
∫
S2 L(ω) dω,

generalized versions of the similarity relations can be derived [106]. Unlike

(7.18), unfortunately, these relations do not easily generalize to higher orders.

Assuming (A.1) holds, namely the radiance field is linearly anisotropic, (A.7)

and (A.13) can be used to derive the generalized similarity relation of order-1

as follows. Applying ∂i and summing over 1 to 3 on both sides of (A.13) and

substituting (A.7) into the resulting equation yields

3∑
i=1

∂2
i φ = σaσtr,1φ− σtr,1Q(0) +

3∑
i=1

∂iQi.

For participating media with no internal source, all moments of Q vanish, giving

σaσtr,1φ −
∑

i ∂
2
i φ = 0. Similarly, it holds that σ∗aσ∗tr,1φ −

∑
i ∂

2
i φ = 0. Equating

these two equations yields

σaσtr,1 = σ∗aσ
∗
tr,1, (A.17)

which is the order-1 generalized similarity relation. In addition, it has been

shown in [106] that the solution radiance field L of the original RTE and the

solution L∗ of the altered one are related as follows:

L(ω) =
σa
σ∗a
L∗(ω) +

(
1− σa

σ∗a

)
φ

4π
. (A.18)

Note that when σ∗a = σa, (A.18) collapses to L(ω) = L∗(ω) and (A.17) becomes

the order-1 similarity relation, namely (7.18) with N = 1.
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A.3 Phase function moments

Given a phase function f(·), its monomial moments and Legendre moments are

defined as follows.

Monomial Moments. Given f(·), its n-th monomial moment is

γn :=

∫ 1

−1

f(t) tn dt. (A.19)

Legendre Moments. Given f(·), its n-th Legendre moment is

fn := 2π

∫ 1

−1

f(t)Pn(t) dt (A.20)

where Pn denotes the degree-n Legendre polynomial and 2π is a normalization

term. Since f(·) is a phase function, it holds that

f0 = 2π

∫ 1

−1

f(t) dt =

∫
S2
f(cos θ) dω ≡ 1 (A.21)

and

f1 = 2π

∫ 1

−1

tf(t) dt =

∫
S2

cos θf(cos θ) dω (A.22)

where θ is the angle between ω and the incident direction. f1 is usually referred

to as the average cosine of f(·). For a Henyey-Greenstein (HG) phase function

with parameter g, its n-th Legendre moment has been shown to equal gn (see

Theorem 7.1 in [94]).

In fact, monomial moments and Legendre moments are closely related. Pre-

cisely, for any N ≥ 0, the first (N + 1) Legendre moments and the first (N + 1)

monomial moments uniquely determine each other. In other words, any phase

function f(·) with f0, . . . , fN fixed will have the same γ0, . . . , γN , and vice versa.
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Proof. Let Pn(t) =
∑n

i=0 pn,i t
i. According to (A.19) and (A.20), we know that for

any n ≥ 0,

fn = 2π
n∑
i=0

(
pn,i

∫ 1

−1

f(t) ti dt︸ ︷︷ ︸
= γi

)
. (A.23)

Let γ := (γ0 γ1 . . . γN)T and f := (f0 f1 . . . fN)T , equation (A.23) can be rewritten

in vector form as

f = 2π P̂γ. (A.24)

where P̂ is an (N + 1)× (N + 1) matrix with P̂ (i+ 1, j+ 1) = pi,j for 0 ≤ i, j ≤ N .

It is easy to verify that P̂ is lower-triangular and non-singular. Thus, γ and f

uniquely determine each other. Given f , γ can be computed by solving the linear

system in (A.24). �

A.4 Results: performance versus accuracy

Figures A.1 and A.2 contain rendered images we used to study how α, the user-

specified parameter, controls the balance between performance and accuracy.

The renderings in Figure A.1 correspond to the orange curve in Figure 7.6 in

Chapter 7. The environment lighting used in the following rendering is “Kitchen”

from [14]. Note that the error in the results with high α values are mostly from

Monte Carlo noise.

The renderings in Figure A.2 correspond to the purple curve in Figure 7.6.

We used the environment lighting “Ennis” from [14].
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A.5 Results: overfitting

In our experiments, overfitting does not happen very often and normally causes

only subtle differences. Figure A.3 illustrates two examples where altered pa-

rameters adhering to the order-3 similarity relation overfit. Our method (Algo-

rithm 7.1) successfully rejects these solutions (and returns the order-2 versions)

since their coverages are too small (which is demonstrated by the phase func-

tions plots).
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0% 10% 20% 30%

Reference α = 0.05 α = 0.1

α = 0.2 α = 0.3 α = 0.4

α = 0.5 α = 0.75

Figure A.1: Rendered images used to create the orange curve in Figure 7.6. The
relative error maps (using the color mapping shown at the top) are included.
Note that the error decreases with increasing α.
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Reference α = 0.05

α = 0.1 α = 0.2

α = 0.3 α = 0.4

α = 0.5 α = 0.75

Figure A.2: Rendered images corresponding to the purple curve in Figure 7.6.
The relative error visualizations use the same color mapping as Figure A.1.
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Figure A.3: Two examples of overfitting. In both examples, the altered param-
eters satisfying the order-3 similarity relation overfit.
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A.6 Results: spanning the perceptual space

This section includes the images we used to create the embeddings in Figure 7.9.

The two examples in Figure 7.9-cde correspond to phase functions 18 and 35.

A.6.1 Rendered images

This section illustrates 40 rows of images, and each row corresponds to a phase

function that we picked from [29]. In each row, the left image is rendered with

the original parameters and used for creating the reference embedding (the

blue points in Figure 7.9-ab). The middle image is generated with the altered

parameters provided by Algorithm 7.1 in Chapter 7. We use it for the higher-

order embedding (the yellow points in Figure 7.9-a). The right image is created

with the altered parameters satisfying only the order-1 similarity relation. The

corresponding embedding (which collapses to a 1D line) is in Figure 7.9-b. The

middle and right images share the same altered scattering coefficient σ∗s and are

rendered in similar time.

1: Reference 1: Order-3 1: Order-1
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2: Reference 2: Order-5 2: Order-1

3: Reference 3: Order-5 3: Order-1

4: Reference 4: Order-5 4: Order-1

5: Reference 5: Order-5 5: Order-1

6: Reference 6: Order-4 6: Order-1
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7: Reference 7: Order-3 7: Order-1

8: Reference 8: Order-2 8: Order-1

9: Reference 9: Order-3 9: Order-1

10: Reference 10: Order-4 10: Order-1

11: Reference 11: Order-3 11: Order-1
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12: Reference 12: Order-3 12: Order-1

13: Reference 13: Order-2 13: Order-1

14: Reference 14: Order-3 14: Order-1

15: Reference 15: Order-2 15: Order-1

16: Reference 16: Order-2 16: Order-1
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17: Reference 17: Order-2 17: Order-1

18: Reference 18: Order-3 18: Order-1

19: Reference 19: Order-3 19: Order-1

20: Reference 20: Order-5 20: Order-1

21: Reference 21: Order-5 21: Order-1
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22: Reference 22: Order-5 22: Order-1

23: Reference 23: Order-5 23: Order-1

24: Reference 24: Order-3 24: Order-1

25: Reference 25: Order-5 25: Order-1

26: Reference 26: Order-4 26: Order-1
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27: Reference 27: Order-4 27: Order-1

28: Reference 28: Order-5 28: Order-1

29: Reference 29: Order-5 29: Order-1

30: Reference 30: Order-4 30: Order-1

31: Reference 31: Order-4 31: Order-1
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32: Reference 32: Order-4 32: Order-1

33: Reference 33: Order-4 33: Order-1

34: Reference 34: Order-4 34: Order-1

35: Reference 35: Order-1 35: Order-1

36: Reference 36: Order-2 36: Order-1
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37: Reference 37: Order-4 37: Order-1

38: Reference 38: Order-3 38: Order-1

39: Reference 39: Order-4 39: Order-1

40: Reference 40: Order-4 40: Order-1

A.6.2 Phase function plots

This section contains the plots of all phase functions used to create the renderings

in Section A.6.1.
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