
GSViz: Progressive Visualization of Geospatial Influences in Social
Networks

Sadeem Alsudais, Qiushi Bai, Shuang Zhao, Chen Li

Department of Computer Science, UC Irvine, CA 92697, USA

{salsudai,qbai1}@uci.edu,{shz,chenli}@ics.uci.edu

ABSTRACT
With the growing popularity of social networks, it becomes increas-

ingly important to analyze binary relationships between entities

such as users or online posts. These relationships are particularly

useful when the entities are location-based. The spatial dimension

provides more insights on influences in social networks across dif-

ferent regions. In this paper, we study how to visualize geospatial

relationships on a large social network for queries with ad hoc

conditions (such as keyword search) that retrieves a subnetwork.

We focus on a main efficiency challenge to support responsive visu-

alization, and present a middleware-based system called GSViz that
progressively answers requests and computes results incrementally.

GSVizminimizes visual clutter by clustering the spatial points while

considering the edges among them. It further minimizes the clutter

by incrementally bundling the edges, i.e., grouping similar edges in

a bundle to increase the screen’s white space. The system allows

user interactions such as zooming and panning. We conducted an

extensive computational study on real data sets and a user study,

which evaluated the system’s performance and the quality of its

visualization results.

CCS CONCEPTS
• Human-centered computing→ Visualization.

KEYWORDS
Geo-social network, progressive visualization

ACM Reference Format:
Sadeem Alsudais, Qiushi Bai, Shuang Zhao, Chen Li. 2022. GSViz: Progres-
sive Visualization of Geospatial Influences in Social Networks. In The 30th
International Conference on Advances in Geographic Information Systems
(SIGSPATIAL ’22), November 1–4, 2022, Seattle, WA, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/https://doi.org/10.1145/3557915.3560983

1 INTRODUCTION
With the prevalent use of social media, it is becoming increasingly

important to understand binary relations between entities, such

as users or their online posts. Example relationships are “follows”

between users and “retweets” between social-network posts. As

many entities are location-based, naturally we want to analyze the

geospatial relationships between these entities. In fact, analytics of

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9529-8/22/11.

https://doi.org/https://doi.org/10.1145/3557915.3560983

geospatial relationships on social networks can be used in applica-

tions such as viral marketing (word-of-mouth information transfer

between socially connected users) [40] or personalized location-

based recommendations using social relationships [5]. Many recent

efforts study the influence of geospatial relationships among enti-

ties on social networks [21, 22, 37].

Motivation. As an example, it has been observed that Covid-19

vaccine hesitancy is influenced by many factors such as geographic

interactions [7] and social media interactions [26]. Analyzing tweets

is a useful way to understand how vaccine information propagates

across different regions. Figure 1a shows a sample network, where

a node is a tweet about vaccines, and an edge between two tweets is

an interaction between them, i.e., “retweet” or “reply-to.” Analysts

from public health are interested in examining the network to

understand the geo-social influence of tweets about vaccines.

Visualization is a powerful and efficient tool to help analysts

gain quick insights from data [3]. In this paper, we study how

to visualize geo-social networks, i.e., geospatial relationships on
a social network, to help domain experts that need this type of

data analytics. We consider the common setting where the data is

stored in a database system. As social media data has semantically

rich attributes such as temporal, spatial, and textual attributes,

we are particularly interested in the case where a user submits

a visualization request with ad hoc conditions on the attributes.

For instance, a user wants to visualize the subnetwork of tweets

containing keywords such as Covid, Pfizer, or Moderna.

(a) All edges from replies (source
blue) to original tweets (destina-
tion red)

(b) Result of edge-aware vertex
clustering (§3)

(c) Result of progressive edge
bundling (§4)

(d) Results of applying both tech-
niques (§5)

Figure 1: A geo-social network of tweets containing the key-
word vaccine and results of applying our techniques to sup-
port progressive visualization and simplify the network.

https://doi.org/https://doi.org/10.1145/3557915.3560983
https://doi.org/https://doi.org/10.1145/3557915.3560983

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Alsudais, et al.

Challenges. Due to the ever increasing data size, visualizing large

geo-social networks faces the following computational challenges:

C.1 Visualization requests with ad hoc conditions can be computa-

tionally expensive in terms of query execution in the database,

network transfer, and frontend rendering. This negatively af-

fects the responsiveness and consequently the user experi-

ence [14, 31].

C.2 Visualizing full networks without any simplification can pro-

duce results that are visually too cluttered. For instance, Fig-

ure 1a shows a cluttered result that is very difficult for the user

to interpret.

To address these challenges, we develop a novel middleware-

based system called “GSViz”, which stands for “Geo-social network

visualizer.” To overcome C1, we leverage progressive computation

by slicing a long-running query into multiple mini-queries, each

of which has an additional slicing predicate on an attribute. In this

way, each mini-query can be executed efficiently, and the results

are returned in batches [20]. Similar to streaming videos, users are

willing to wait until the end of a long running query as long as

there are bursts of frequent updates “for keeping the user’s attention

focused” [14] and to help users “lose their sense of time” [31].

We address C2 by clustering network vertices and bundling the
edges. The problem of clustering spatial points has been studied

extensively (e.g., [39]). These solutions cluster the points without

considering the impact of edges between them. On the other hand,

graph-based solutions [1, 35] do consider edges. However, they

focus on optimizing the overall layout of a graph. In contrast to

vertices in general graphs, vertices in geo-social networks have

geo-location. Thus, solutions on graphs are not directly applicable

in our case. We solve this problem by developing a new algorithm

that clusters geo-social network vertices in an edge-aware fashion

(Figure 1b). Additionally, we simplify a network using edge bundling

that merges edges with similar directions and lengths (Figure 1c).

Previous edge-bundling techniques [18] are not incremental and
can take a long time to handle large input networks. To solve this

problem, we develop a new technique to incrementally bundle the

network edges that arrive in batches as the results of mini-queries.

We show that these two techniques can be integrated to further

simplify the network (Figure 1d).

To the best of our knowledge, GSViz is the first system to solve

the problem of incrementally visualizing and simplifying a large

geo-social network by querying a database. In this paper we make

the following contributions:
(1) Introducing the architecture of GSViz and describing the details

of its components needed to answer a visualization request with

ad hoc conditions progressively (§2).

(2) Developing a new technique that clusters network vertices in

an incremental and edge-aware fashion (§3).

(3) Presenting an efficient technique to bundle network edges pro-

gressively by leveraging a novel structure called PEB-tree (§4).

(4) Integrating the two techniques, addressing related challenges,

and supporting zooming and panning (§5).

(5) Conducting an experimental evaluation, including a user study,

on real data sets (§6). The results show that, compared to previ-

ous methods, the proposed system offers better performance

without compromising the quality of visualization results.

1.1 Related Work
Big graph visualization systems. Some studies visualize the geo-
social network as an O-D relation between spatial points [16]. The

Gephi and Tulip systems [4, 6] load graph data into memory and

process it offline, allowing interactive online filtering and explo-

ration. These systems simplify the graphs and reduce visual clutter

by performing graph clustering and layout algorithms. Tulip ad-

ditionally bundles the edges. CGV [35], and ASK-GraphView [1]

systems focus on graph(non-spatial) retrieval from a database and

allow interactive exploration on the retrieved graph. They cluster

the vertices while considering the edges by moving the vertices

to any location to reduce edge crossings. CGV [35] additionally

bundles the edges for a decluttered visual result. GraphVizdb [8]

also allows visualizing a network based on querying the database.

Tableau [32] is a commercial tool to visualize data from local files

and remote databases. These techniques do not allow progressive

processing of user queries.

Visualization of spatial points. One class includes visualization
of spatial points such as VAS [25], Kyrix-s [33], Tabula [38], SOS [15],

and HadoopViz [12] . The second class includes techniques to pro-

gressively cluster spatial points. IncrementalDBSCAN [13] clusters

points by inserting each incoming point into a pre-existing nearby

cluster or forming its own cluster if it is an outlier. BIRCH [39] uses

a tree structure to group points into clusters based on Euclidean

distance. GRIN [9] groups points in a hierarchical structure and

uses the gravity theory to decide the position a new point should be

inserted into the hierarchy. These methods do not consider edges

between the points when clustering.

Edge bundling. Cost-based edge-bundling [18, 30] use a spatial

metric to measure the closeness of the edges and move them closer.

These methods produce results with a high visual quality but can be

very slowwhen handling a large graph with many edges. Geometry-

based edge bundling [11] uses geometric approaches such as De-

launay triangulation to decide which edges should be grouped.

Image-based [19, 34] use Gaussian filtering to measure edge den-

sities. Although these implementations could be applicable in our

setting, they do not support incremental computation.

Progressive visualization. A section of prior works [20] focuses

on progressive computation from the database perspective. Other

solutions [36] focus on rendering the visual results progressively.

Some sampling techniques [27] progressively improve the sample

result by decreasing the error margin. These solutions are comple-

mentary to GSViz. Our focus is on how to incrementally cluster

the vertices of a geo-social network while considering the edges

between them and bundling the edges.

2 GSVIZ SYSTEM OVERVIEW
In this section, we explain the problem setting using an example,

then describe the overall architecture of GSViz and explain the

lifecycle of a visualization request in the system.

Problem formulation. Consider a typical three-tier architecture
comprised of: (i) a frontend that submits visualization requests;

(ii) a backend database that stores geo-social networks in tables;

and (iii) a middleware layer that translates visualization requests

GSViz: Progressive Visualization of Geospatial Influences in Social Networks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

Table 1: Sample network data with tweets and their replies

from-id from-date from-coordinate . . . to-id to-date to-coordinate . . .

667057004570 2020-08-19 (-74.0266, 40.6839) . . . 669057256558 2020-08-17 (-73.9625, 40.5417) . . .

669228452424 2020-08-11 (-122.4221,37.7700) . . . 667131783385 2020-08-11 (-70.3463, 43.6405) . . .

669057004984 2020-08-03 (-111.9217, 40.5933) . . . 669225335465 2020-08-01 (-71.1915, 42.2277) . . .

to database queries and forwards results to the frontend. To rep-

resent geo-social networks, we assume there is a table 𝑇 , where

every record is an edge connecting two geo-located points that may

be associated with additional information such as text or times-

tamp. Table 1 shows such an example, where individual data points

are tweets and a directed edge represents a reply-to relationship

between an original tweet and a reply tweet.

The frontend layer allows a user to submit ad hoc visualization

requests with arbitrary filtering conditions on spatial, textual, and

temporal attributes. The following is an example query 𝑄 that

requests for tweets and their replies posted during August 2020 and

contain the keyword vaccine:

Original Query𝑄

SELECT from-coordinate, to-coordinate

FROM tweet-replies

WHERE to_tsvector(from-text)@@to_tsquery('vaccine')

AND from-date between '2020-08-01' and '2020-08-20'

AND from-coordinate box ’((-124.4, 36.5),(-70.1, 45.0))’;

For a large table𝑇 , these visualization requests can be computation-

ally expensive as handling them requires querying the database,

transferring the results via the network, and performing frontend

rendering. To allow timely feedback to the user, it is desired to have

the middleware slice the original query𝑄 into multiplemini-queries,
each of which has an additional predicate on an attribute (which we

call a slicing predicate). In the running example, we use “from-date”

as the slicing attribute.

A mini-query𝑄𝑖

SELECT from-coordinate, to-coordinate

FROM tweet-replies

WHERE to_tsvector(from-text)@@to_tsquery('vaccine')

AND from-date between ’2020-08-01’ and ’2020-08-05’

AND from-coordinate box ’((-124.4, 36.5),(-70.1, 45.0))’;

The small date range in amini-querymakes it more selective, and

an index on the slicing predicate helps fast retrieval of the result, a

subset of the requested network called a subnetwork. Moreover, the

small date range in the mini-query captures the dynamic changes

on the network over time. In the running example, the mini-query

𝑄𝑖 includes an additional predict (in blue) to yield the subnetwork

containing the keyword vaccine in the first 5 days in August 2020.

The main objective of the middleware is to quickly process and

visualize a subnetwork, in addition to those given by previous mini-

queries, in a progressive fashion while minimizing visual clutter.

System architecture. We introduce a new system called GSViz
that adopts the aforementioned three-tier architecture with a focus

on the middleware layer for generating mini-queries then simplify-

ing its results to visualize the network in a user-friendly fashion.

Figure 2 depicts the system’s architecture. Its qery manager

component answers long-running queries progressively. To reduce

Middleware

query
manager

Fr
on
te
nd

bundle
manager

request

cluster
manager

response

request
handler

response
manager

...

generate
mini queries

D
at
ab
as
e...

mini
query
result

Figure 2: GSViz system architecture.

visual clutter, the middleware has a cluster manager and a bun-

dle manager to incrementally cluster spatial points of a geo-social

network and bundle edges, respectively.

The lifecycle of a visualization begins with the middleware slic-

ing the original query into multiple mini-queries and forwards them

to the backend database one by one. Every mini-query request and

its response form a batch. Whenever the middleware receives the

result of a mini-query from the database, it (i) Clusters the vertices

of the subnetwork using an edge-aware spatial point clustering (§3),

which produces super edges between the clusters; (ii) Bundles the

super edges between the clusters in a progressive fashion; (iii) For-

wards the simplified subnetwork to the frontend to render. We call

an edge between two clusters a “super edge” because it represents

many edges between individual points across the two clusters. The

result of clustering the vertices and bundling the super edges of a

subnetwork is called a simplified subnetwork.

3 INCREMENTAL EDGE-AWARE CLUSTERING
OF GEO-SOCIAL NETWORK VERTICES

A key operation performed by GSViz is incremental spatial cluster-

ing of geo-social network vertices. This merge of nearby points and

their associated edges reduces visual clutter of visualizing large net-

works. In this section, we first revisit a widely used point-clustering

technique in §3.1. Building upon this technique, we introduce in §3.2

an edge-aware clustering algorithm. Lastly, we discuss in §3.3 per-

formance optimizations of this algorithm.

3.1 Incremental Clustering of Network Vertices
We build the vertex clustering operation based on a widely used

spatial point clustering algorithm called supercluster [17]. At a
high level, supercluster takes as input a set of points, which map

to vertices of network edges, and clusters the vertices iteratively.

When a new edge arrives, the algorithms first performs a range

search for each vertex of the edge over centers of existing clusters.

The center of the cluster is the average of its points. The radius

𝜌 of these searches is determined empirically based on several

factors such as the field of view and screen resolution. Note that

the range search can return multiple candidate clusters for each

vertex. To determine which cluster a vertex should be inserted into,

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Alsudais, et al.

baba

d c d

a

c

b
dc

i) Finding nearest
clusters of vertices
of a new edge

ii) SUPERCLUSTER:
inserting a vertex to
its nearest cluster,
thus creating a new
super edge

iii) Proposed edge-aware
approach: inserting two
vertices to their nearby
clusters already connected
by a super edge

new
points

range
search

existing
cluster

new
edge

existing
edge

Figure 3: Incrementally clustering a new edge (𝑙, 𝑟). For sim-

plicity, we omit the edge directions and cluster centers.

supercluster takes a greedy approach by selecting the cluster whose
center lies closest to the vertex. Although this simple method works

adequately for clustering spatial points, it neglects network edges,

thus can lead to a large number of super edges after clustering.

Figure 3 illustrates such an example. For simplicity, we represent

an edge 𝑒 as two vertices (𝑙, 𝑟) to denote the left and right vertex re-
spectively. Upon receiving a new edge (𝑙, 𝑟), supercluster performs

a range search around 𝑙 and 𝑟 , as shown in Figure 3-i. Then, points 𝑙

and 𝑟 are inserted in their nearest clusters, i.e., 𝑎 and 𝑏 respectively.

This merge causes the resulting network to contain a super edge

(𝑎, 𝑏), as demonstrated in Figure 3-ii. In this example, since there

already exists a super edge (𝑐, 𝑑), inserting 𝑙 into cluster 𝑐 and 𝑟

into 𝑑 is better, as shown in Figure 3-iii. This example demonstrates

that, to produce high-quality visualizations for geo-social networks,

the point clustering algorithm needs to be edge-aware. That is, it
needs to consider the information of existing super edges between

the clusters during the clustering process. We present our solution

to this problem next.

3.2 Achieving Edge-Awareness
For each edge 𝑒 = (𝑙, 𝑟) in a batch of edges 𝐸, our goal is to in-

sert both of its vertices into nearby clusters while minimizing the

number of super edges. To this end, we start with checking if the

distance between the two vertices is within 𝜌 . If so, we merge them

into one point𝑚 and insert it into its nearest cluster. The goal of this

step is to filter the edges that are too short. If the distance is larger

than 𝜌 , we find nearby clusters for each vertex. For each vertex, if

it does not have any nearby clusters, we create a new cluster for

it and insert the new cluster to the corresponding set. We check

if there exists a pair of candidate clusters that already has a super

edge connecting them. If a pair exists, the edge vertices are inserted

into these clusters. Revisiting the running example in Figure 3-iii,

using this technique, point 𝑙 will be inserted into cluster 𝑐 and point

𝑟 into 𝑑 . If such a pair is not found, the two vertices are inserted

into their nearest clusters. Then we create a super edge to connect

the two clusters. Full details of the algorithm is in Appendix A

3.3 Improving Computational Efficiency
Computational challenges. The computational complexity of the

edge-aware clustering algorithm is higher than that of traditional

methods due to the need of examining connectivity between candi-

date clusters. Specifically, traditional point clustering algorithms

such as supercluster always pick the nearest cluster, leading to a

complexity of 𝑂 (d𝑁), where d is the number of candidate clusters

for a point 𝑛 in a batch and 𝑁 is the number of points in the batch,

i.e., 𝑁 = 2𝐸, where 𝐸 is the size of a subnetwork in the batch. The

complexity of the edge-aware clustering is 𝑂 (d2𝑁), as we need to

find the adjacency between every pair of candidate clusters from

each corresponding vertex to check if they are connected. This high

complexity negatively affects the visualization performance. To

address the performance issue, we propose a grid-based technique

to quickly find a nearby super edge within the range radius that is

not necessarily the nearest.

1st cell ID 2nd cell ID super edges

(x2,y2) (x3,y6) e1, e2

(x4,y6) (x2,y8) e3

e1

range
search new

edge
x1

e3
e2

existing
edges

cluster
centroid

Super Edge Hash Table

x2

x3

x4

y1 y2 y3 y4 y5 y6 y7 y8

Figure 4: Using a grid to speed up edge-aware clustering.
Grid-based acceleration. We first divide the space into a grid,

where the size of a cell is determined by 𝜌 . Then we build an in-

memory hash table to store the super edges. A key in the hash

table consists of a pair of cell IDs and the value is a set of edges

whose vertices are in the corresponding cells. Whenever a new

super edge is formed between two clusters, we insert it to the hash

table. Figure 4 shows how we use the hash table to insert an edge

𝑒 = (𝑙, 𝑟) into an existing super edge. We first identify the grid cells

within the search radius from 𝑙 and from 𝑟 . Consider the cell-ID pair

[⟨𝑥2, 𝑦2⟩, ⟨𝑥3, 𝑦6⟩] in the hash table that includes a set of existing

super edges in the cells. We choose any edge that both of its vertices

lie within the search radius. i.e., edge 𝑒1. We insert the points 𝑙 and

𝑟 to the corresponding clusters represented as the vertices of the

edge 𝑒1. The complexity of this approach is reduced to 𝑂 (𝐸).

4 INCREMENTAL EDGE BUNDLING FOR
NETWORK SIMPLIFICATION

In this section, we first describe the problem of network simplifica-

tion using edge bundling (§4.1). Then, we present a new technique

to enable efficient and incremental bundling of network edges (§4.2

and §4.3). For simplicity, we assume vertices of an edge in the net-

work do not change in later batches and will relax this assumption

in the next section.

4.1 Problem Specification
Given a geo-social network, we consider the problem of visually

simplifying the network while preserving as much information as

possible. This has been typically achieved via edge bundling—a pro-
cess that deforms network edges so that nearby ones share similar

shapes, allowing the screen space to be used more efficiently. We

utilize the widely adopted force-directed edge bundling (FDEB) [18].
Force-directed edge bundling.We now provide a brief recap of

the FDEB algorithm, starting with the following key definitions:

Definition 4.1. For two edges 𝑒1 and 𝑒2, their compatibility mea-
sure, denoted 𝐶𝑒 (𝑒1, 𝑒2), is a value computed using their angle,

length, position, and visibility [18].

GSViz: Progressive Visualization of Geospatial Influences in Social Networks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

Definition 4.2. We say two edges 𝑒1 and 𝑒2 are compatible if

𝐶𝑒 (𝑒1, 𝑒2) ≥ 𝛿 for a given constant threshold 𝛿 .

Given an edge 𝑎 and a set of edges 𝑆 = {𝑏1, . . . , 𝑏𝑛} compatible

with 𝑎, FDEB deforms the edge 𝑎 based on 𝑆 as follows. Assuming

that the edge is represented as a polyline 𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑚) with
𝑎0 and 𝑎𝑚 being the two fixed endpoints, the remaining points

𝑎1, . . . , 𝑎𝑚−1 are called the edge’s control points. To deform a net-

work edge 𝑎, FDEB applies two types of forces—spring and elec-
trostatic—to its control points. The spring force exists between

two adjacent points within the same edge. That is, each control

point 𝑎𝑖 (with 0 < 𝑖 < 𝑚) received spring forces 𝐹𝑠 (𝑎𝑖 , 𝑎𝑖−1) and
𝐹𝑠 (𝑎𝑖 , 𝑎𝑖+1) that are determined, respectively, by the positions of

𝑎𝑖−1 and 𝑎𝑖+1 [18]. The electrostatic force, on the other hand, is

between control points from different compatible edges. Specifi-

cally, let 𝑏 𝑗 = (𝑏 𝑗,0, . . . , 𝑏 𝑗,𝑚) be an edge from 𝑆 . Then, for each

0 < 𝑖 < 𝑚, the electrostatic force acting on 𝑎𝑖 by 𝑏 𝑗,𝑖 is

𝐹𝑒 (𝑎𝑖 , 𝑏 𝑗,𝑖) =
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑎𝑖 𝑏 𝑗,𝑖

∥𝑎𝑖 − 𝑏 𝑗,𝑖 ∥
, (1)

where

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑎𝑖 𝑏 𝑗,𝑖 denotes the unit vector pointing from 𝑎𝑖 to 𝑏 𝑗,𝑖 . To

avoid singularities, 𝐹𝑒 is set to zero when ∥𝑎𝑖 − 𝑏 𝑗,𝑖 ∥ is below a

predetermined threshold.

In this way, the net force acting on 𝑎𝑖 (given 𝑆) is

𝐹 (𝑎𝑖 , 𝑆) = 𝐹𝑠 (𝑎𝑖 , 𝑎𝑖−1) + 𝐹𝑠 (𝑎𝑖 , 𝑎𝑖+1) +
∑︁
𝑏 𝑗 ∈𝑆

𝐹𝑒 (𝑎𝑖 , 𝑏 𝑗,𝑖) . (2)

All forces 𝐹 , 𝐹𝑠 , and 𝐹𝑒 in the equation are two-dimensional vectors.

By computing the net force acting on each control point 𝑎𝑖 , we

move these points accordingly, as shown in Figure 5. We call the

entire process “bundling edge 𝑎 using the set of edges 𝑆 .”

Given a set of edges 𝐸 = {𝑒1, . . . , 𝑒𝑛}, the FDEB algorithm bun-

dles these edges as follows. For each 𝑒𝑖 ∈ 𝐸, the algorithm first

computes 𝑆𝑖 ⊆ 𝐸 \ {𝑒𝑖 } comprised of edges compatible with 𝑒𝑖 , and

then uses 𝑆𝑖 to bundle the edge 𝑒𝑖 using the aforementioned process.

Lastly, the bundling of each edge 𝑒𝑖 , using the compatible ones, is

repeated for a predetermined number of iterations.

a

curved a

b2

b1

control point

Figure 5: Dragging a control point
on edge 𝑎 using spring and elec-
trostatic forces of compatible
edges 𝑏1 and 𝑏2.

Computational chal-
lenges. To adopt FDEB
in GSViz, a main chal-

lenge we need to over-

come is its high com-

putational cost. Specif-

ically, to enable pro-

gressive visualization,

we need to efficiently

bundle edges of sub-

networks that arrive in

batches. A naïve solution is to bundle the new edges using existing

subnetworks. This, however, is inefficient as computing the compat-

ible set 𝑆𝑖 for each new edge 𝑒𝑖 in the batch requires examining all

the edges received so far. Moreover, computing electrostatic forces

using Eq. (1) requires examining all compatible edges from earlier

batches. This clearly cannot meet the responsiveness requirement

in interactive visualization. In the rest of this section, we present

a novel technique for efficient incremental edge bundling. Notice

that the spring forces are computed within each edge locally, so

they can be computed with a low overhead. Thus we mainly focus

on improving the performance of 1 finding the compatible edges

for each new edge and 2 the computation of electrostatic forces.

n1 n2 n3 n4

n5np

ni

root

......

e1
ep

e2

weight

edge

Figure 6: A PEB-tree for a set of edges.

4.2 PEB-Tree
At the core of our technique is a new hierarchical data structure—

which we call the “PEB-tree” —that represents a set of edges 𝐸.

(“PEB” stands for Progressive Edge Bundling.) As shown in Figure 6,

each leaf of the PEB-tree corresponds to a “raw” edge from 𝐸. Each

internal node stores: (i) an edge as a proxy of the raw edges in the

descendants of this node; and (ii) a weight 𝜔 that is the number

of those raw edges. Edges of the same parent siblings are initially

compatible with each other, and the parent’s edge is the weighted

average edge computed using the child edges. Each vertex of the

parent edge is a weighted average of the corresponding vertices

of the child edges. Figure 6 shows the details of computing the

vertex 𝑙𝑝 of the weighted edge in the node 𝑛𝑝 , where (𝑥𝑝 , 𝑦𝑝) is the
weighted average of vertices 𝑙1 and 𝑙2 from the child nodes 𝑛1 and

𝑛2.

The tree has a pseudo root as the edges of its children are not

required to be compatible with each other.

Tree construction for the first batch.We construct a PEB-tree

for the first batch in progressive visualization as follows. Initially,

we create a leaf node for each edge in this batch with a weight

of 1. We group these edges such that all the edges in each group

are compatible with each other. For each group, we construct a

parent node that (i) stores an edge given by the weighted average

of all edges stored in its children; and (ii) has a weight that equals

the sum of the weights of its children. This process is repeated

by grouping the nodes without a parent until all edges in those

nodes are mutually incompatible. For each remaining leaf node

that is incompatible with any other node, we construct a replica as

its parent to represent a group that includes the edge of the leaf,

so that future compatible edges could be merged into this group.

Lastly, we construct a pseudo root as the parent of these remaining

edges.

4.3 Incremental Edge Bundling Using PEB-tree
We now describe how to use the PEB-tree to efficiently and incre-

mentally bundle a new batch of edges 𝐸. For every edge 𝑒 ∈ 𝐸,

we create a leaf node 𝑛 with unit weight. We traverse the PEB-

tree top-down and use the compatibility value between each tree

node and 𝑒 to guide the traversal. We find the deepest compatible

non-leaf node 𝑛′. We use the same method as the one introduced

in [18] to compute the compatibility value between a raw edge and

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Alsudais, et al.

a weighted edge. If there exists such an 𝑛′ node, we add 𝑛 as a child

of 𝑛′ and then traverse upward to the root to adjust the edges and

their weights on the way. Notice that it is possible that the new edge

𝑒 is not compatible with every child edge of node 𝑛′. In this case,

after making 𝑛′ the parent of 𝑛, the children of 𝑛′ will no longer be

mutually compatible. If we want to keep this all-pair-compatible

property, we could partition the children into groups such that each

group still has this property. A main downside of this approach is

that there will be too many groups, and a new node can cause a cas-

cading effect on the tree, which can be computationally expensive.

We could relax this property for each group of children of the same

parent node. On the other hand, if 𝑛′ does not exist, we create a
new parent node 𝑛′ for the new leaf 𝑛, which is a replica of the new

edge, then add 𝑛′ as a new child under the root. The replica parent

represents a group containing this singular edge to allow future

compatible edges to be merged into. Note that the time complexity

of traversing and maintaining the PEB-tree depends on its depth

and branching factor, which can be controlled using heuristics for

efficient traversal.

After inserting all the edges of the new batch 𝐸 into the PEB-tree,

we use the new tree to bundle these edges. For each edge 𝑒 ∈ 𝐸,
we use its corresponding parent node 𝑛′ on the tree to bundle 𝑒

using the two types of forces in the FDEB algorithm. In order to

produce a similar edge bundling result of using all the child nodes

under 𝑛′ by using only their parent’s weighted edge 𝑒′, we redefine
the electrostatic force on a control point 𝑎𝑖 to include the weight

information as follows:

𝐹𝑒
(
𝑒𝑖 , 𝑛

′ (𝑒′𝑖 , 𝜔
′)
)
=

𝜔 ′

∥𝑒𝑖 − 𝑒′𝑖 ∥
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑒𝑖𝑒

′
𝑖 . (3)

Deforming the new edge 𝑒 using only the weighted average parent

𝑛′ offers better performance compared with using all raw edges

from the leaf nodes under 𝑛′. We note that the DEB algorithm [30]

also considers edgeweights in its revised electrostatic force function.

However, their approach does not use a single edge to represent

multiple edges, thus does not solve the efficiency issue. Lastly, the

resulting curved edge, which contains the information about the

new location of the control points, is sent to the frontend to be

visualized while the edge in the tree remains the same as before

the deformation. Full details of the algorithm is in Appendix 2.

5 INTEGRATING VERTEX CLUSTERING AND
EDGE BUNDLING

So far we developed two progressive network-simplification tech-

niques: one for clustering the vertices in a new batch, and one for

bundling the new edges. In this section, we study how to integrate

them in GSViz and address related challenges.

We integrate the two techniques in two steps. For the subnetwork

in the first batch 𝐵1, the middleware first uses the edge-aware

clustering algorithm in §3.2 to group these vertices and generate a

set of super edges between the clusters, where a super edge connects

the centers of two clusters. It then uses the technique in §4.2 to

bundle these super edges. Finally, it sends the results, including

the clusters and the curved super edges, to the frontend to display.

For each new batch 𝐵𝑖 , the middleware repeats the aforementioned

steps. For simplicity, we denote a super edge as 𝑒 , and the curved

super edge after bundling as 𝑒 throughout this section.

One problem in integrating these two techniques for the batch

𝐵𝑖 is the effect of the vertex clustering on those existing super edges

computed on earlier batches 𝐵1, . . . , 𝐵𝑖−1.

5.1 Updating Edges Affected by Clustering

new point

clusterold edge

updated edge
old center
new center

Figure 7: Adding a new point
in an existing cluster causes
the cluster and its related su-
per edge to shift.

After adding a new vertex

𝑝 in 𝐵𝑖 to an existing clus-

ter 𝑐 , the center of 𝑐 shifts

as explained in details in

Appendix B. As a result,

the super edge 𝑒 connected

to this center also shifts as

in Figure 7. The changes

to the existing super edges

should be reflected in both the PEB-tree and the displayed results

on the frontend.

Updating PEB-tree. The changes to existing super edges in both

cases include edge deletions and edge insertions. In §4.3 we already

discussed how to insert edges to the tree. To delete an existing edge

from the tree, we locate the leaf node that represents the old edge,

and delete it from the tree. (We store a pointer for each edge to its

leaf node.) Then, we propagate this deletion upwards and for each

node on the path from the leaf to the root, we adjust its weight and

edge. For instance, consider the example in Figure 8. Suppose 𝑒1 is a

super edge before batch 𝐵𝑖 . After the vertex-clustering step for the

new batch 𝐵𝑖 , edge 𝑒1 shifts to 𝑒
′
1
. We delete 𝑒1 from the PEB-tree

and insert the new edge 𝑒′
1
in the tree. If we were to directly update

the edge 𝑒1 to the new edge 𝑒′
1
, then the new edge may not be

compatible with its siblings. To address this concern, we first delete

𝑒1, then insert 𝑒′
1
by using the compatibility score as discussed in §4

to traverse the PEB-tree. Thus 𝑒′
1
is still compatible with its new

siblings. After we handle the updates of existing super edges, we

start progressively inserting the newly generated super edges in

the batch, e.g., 𝑒2 in the running example.

Updating visualization results. As these updated super edges

are already displayed to the user in the frontend, we also need to

“hide" the outdated ones when changes occur. Consider the two

approaches to rendering results in the frontend. Approach (i) that

re-renders the new results from scratch is not appealing due to

its low performance. For approach (ii) that renders new results as

a new layer, we still need to identify the layers of those affected

edges in order to delete these layers. To know which super edge

belongs towhich layer, themiddleware stores for each super edge its

batch number. We use the batch number to identify which layer the

frontend has to replace. When updating those affected super edges,

batchi-1

batchi

……

c

…

c

c

PEB-tree

PEB-tree
c

Tim
e

Frontend Middleware

Batch# edges

Batch# edges

Xdelete

Figure 8: Maintaining updated edges affected by vertex clus-
tering in batch 𝐵𝑖 .

GSViz: Progressive Visualization of Geospatial Influences in Social Networks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

the middleware does not need to rebundle other edges. For those

affected super edges, the middleware identifies their batches, then

sends these batches and notifies the frontend to delete and redraw

those corresponding layers. In the running example in Figure 8,

after batch 𝐵𝑖−1, the hash map includes ⟨Bi−1 : 𝑒1 . . .⟩, since the
super edge 𝑒1 belongs to batch 𝐵𝑖−1. After the vertex-clustering
step for batch 𝐵𝑖 , the edge 𝑒1 shifts. The middleware identifies its

batch 𝐵𝑖−1, and notifies the frontend to delete and redraw the layer

for this batch. To reduce the overhead of redrawing multiple layers

because of frequent updates in super edges whenever a center of the

cluster is shifted, we can optionally relax the updates on existing

super edges to be performed only when a vertex of a super edge is

located outside the boundary of its corresponding cluster.

5.2 Supporting Zooming and Panning
So far we discussed vertex clustering and edge bundling at one

zoom level, where the result of both steps is a set of clusters and

super edges between the clusters on a queried region. To support

efficient zooming and panning operations, GSViz repeats the pro-
cess of vertex clustering and edge bundling per batch at multiple

zoom levels [17] in the background. GSViz maintains a PEB-tree

at every level such that the leaves of the PEB-tree at each level

represent the super edges between the clusters at that level. If a

user wants to zoom or pan on the map, GSViz instantaneously
retrieves the computed subnetwork for the particular region from

the corresponding level.

6 EXPERIMENTS
In this section, we report an experimental evaluation of GSViz1

using real datasets to answer the following questions. (1) How does

edge-aware clustering perform (§6.2)? (2) How does the incremental

edge bundling using PEB-tree perform (§6.3)? (3) How does GSViz
perform when integrating the techniques and how does it compare

to similar systems (§6.4)? (4) How is the quality of the final visual

result perceived by users (§6.5)?.

6.1 Experiment Setting
We used three real geo-social network datasets as shown in Table 2.

Gowalla [10] represents users’ geotagged check-ins to places and

their social friendship between early 2009 and late 2010. Foursquare [29]
represents a social network between geo-tagged users collected

from late 2011 till early 2012 in the US. We generated a random

timestamp for every tuple and used it to specify a slicing predicate

to query the data progressively. Twitter includes tweets and their

replies collected from late 2015 until February 2021.

Table 2: Datasets.
Dataset Content Vertex # Edge # Size (GB)
Gowalla Users’ checkins and

their social relation

99, 563 913, 660 0.12

Foursquare Users’ location and

their social relation

28, 419 7, 176, 141 2.5

Twitter Interaction between

Twitter users by

replies

33, 677, 670 20, 023, 731 8.6

1GSViz is available on Github (https://github.com/sadeemsaleh/gsviz)

We developed GSViz in Java. Additionally, to evaluate the de-

veloped algorithm of Progressive Edge-aware Clustering (PEAC)
in §3.2, we implemented a greedy incremental version of Superclus-
ter [17] called “Hierarchical Greedy Clustering” (HGC) in the mid-

dleware as “Baseline”. Similarly, we implemented non-incremental

FDEB [18] as the baseline to evaluate the Incremental Edge Bundling

(PEB) in §4.2. We used two approaches for slicing a query into mul-

tiple mini-queries using the time predicate. The first one is called

fixed-interval, which slices a query into equi-size time intervals.

The other strategy is called DRUM [20], which slices a query into

dynamic range intervals using a linear regression model to main-

tain the same running time from the database for each mini-query.

Unless otherwise stated, the rhythm in DRUM was set to 500ms.

We ran the experiments on a 64-bit JVM on the Ubuntu 14 op-

erating system on a machine with an Intel Xeon CPU, 98 GB of

RAM, and a 2-TB hard disk. The data was stored in PostgreSQL

11.3 on the same machine. We built a B-tree index on the time

attribute on which we specified the slicing predicate. Additionally,

we built an inverted index on the text attribute on Twitter. We used

keywords with different selectivity values to filter Twitter’s “text”.
The Foursquare and Gowalla datasets did not have a text attribute,

so we used the user-ID to specify range conditions. Each reported

result is the average of three runs. We used a query that resulted

in around 100𝐾 edges in total unless otherwise stated. To evaluate

the quality of visualization on different zoom levels, we used levels

ranging from 3 that showed north and central America to 7 that

showed details of a US city. Experiments in (§6.4) and (§6.5) are

only done on the largest dataset Twitter.

6.2 Progressive Vertex Clustering
Effect of batch size on clustering performance.We evaluated

the performance of PEAC against the baseline HGC. We measured

the effect of varying the batch size on the performance of cluster-

ing vertices of a subnetwork in a new batch. We used the DRUM
approach for slicing the query to keep a constant running time

and similar batch sizes. We took the average of the batch size over

all the batches from three runs. We varied the rhythm in DRUM
between 1 second to 3 seconds.

Figure 9 shows the average response time of all batches for one

batch size. Both HGC and PEAC had a sub-second response time

when the batch had around 2𝐾 edges. As the batch size increased

to 7𝐾 edges, HGC’s response time increased to 2.8 seconds while

PEAC’s time was within 1.6 seconds. The reason PEAC’s response
time increased at a slower rate compared to HGC was due to the

benefit of applying the grid-based technique discussed in §3.3 on

PEAC to cluster the edges in the batch. Hence its performance was

proportional to the batch size only, whereas HGC’s performance

was additionally affected by the neighboring clusters per vertex.

Effect of edge-aware clustering on graph density.We evaluated

PEAC’s reduction on the number of super edges compared to HGC.
We used graph density [23], which is measured as the number of

edges over the number of possible edges between the vertices in

the graph. In our setting, we used the number of super edges that

resulted from the clustering over the number of raw edges, i.e.,

of super edges

of raw edges
. Figure 10 shows the results of the network’s density

for different zoom levels. For the Foursquare dataset, on zoom level

https://github.com/sadeemsaleh/gsviz

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Alsudais, et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8

R
es
po
ns
e
Ti
m
e
(s
)

Batch Size (thousands)

HGC
PEAC

(a) Gowalla.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8

R
es
po
ns
e
Ti
m
e
(s
)

Batch Size (thousands)

HGC
PEAC

(b) Foursquare.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8

R
es
po
ns
e
Ti
m
e
(s
)

Batch Size (thousands)

HGC
PEAC

(c) Twitter.
Figure 9: Time of vertex clustering per batch (fixed batch size using DRUM).

4, HGC resulted in 2, 558 super edges, while PEAC significantly

reduced the number to as low as 934. The graph density of PEAC
was more noticeable at zoom levels 4, 5, and 6. At zoom level 3, the

range radius 𝜌 was large and it resulted in aggregating the network

to include only a few clusters, which led to only a few super edges

connecting them in both HGC and PEAC. Zoom level 7 had only a

few clusters due to the small number of vertices in the small area

of a city. As a result, both HGC and PEAC had few super edges.

6.3 Progressive Edge Bundling
We evaluated the effect of varying the interval range size on the

performance of non-incremental baseline FDEB and our incremen-

tal approach PEB. Since FDEB runs the bundling algorithm in each

batch on the accumulated result of previous batches, we made sure

the result of a batch is the same across different runs. In order to do

that, we used the fixed-interval slicing approach. We used a query

that generated around 3𝐾 edges in total.

Figure 11 shows the average response time of edge bundling per

batch using FDEB and PEB. When the range was two months in

both Twitter and Foursquare, FDEB’s response time was about 7.3

seconds, whereas PEB’s response time was about 100 ms. When

the slicing interval was 6 months, FDEB’s response time increased

to more than 10 seconds, while PEB’s response time was only

1.6 seconds. FDEB’s performance was better on Gowalla than its

performance on Twitter and Foursquare datasets because most the

edges were not compatible. We note that the response time of PEB
on all datasets was mostly affected by the first batch when we used

the baseline to construct the PEB-tree.

6.4 Integrating Both Techniques
We evaluated the performance of integrating both vertex clustering

and edge bundling during the whole lifecycle of a visualization re-

quest inGSViz, including querying the database, clustering vertices,
and bundling edges. We considered a baseline approach that used

HGC for vertex clustering and FDEB for edge bundling. We then

considered GSViz’s approach that used PEAC for vertex clustering

and PEB for edge bundling. We used the Twitter dataset and varied

the keyword selectivity from 0.05% to 2.5%, resulting in a network

that consisted of 10K to 500K raw edges. The number of super edges

after clustering ranged from 1K to 3K. Figure 12 shows the average

response time per batch for different keyword selectivity values.

GSViz had a stable response time of 600 ms per batch regardless of

the network size because the batch size was almost the same for

each mini-query. The baseline’s performance, on the other hand,

increased from 655 ms to 1.6 seconds when the network size in-

creased. This increase was because FDEB re-bundled the network

edges from scratch for each batch.

0
200
400
600
800
1000
1200
1400
1600

0 0.5 1 1.5 2 2.5

R
es
po
ns
e
Ti
m
e
(m
s)

Query Selectivity (%)

Bundling
Clustering

DB querying

(a) Baseline.

0
200
400
600
800
1000
1200
1400
1600

0 0.5 1 1.5 2 2.5
R
es
po
ns
e
Ti
m
e
(m
s)

Query Selectivity (%)

Bundling
Clustering

DB querying

(b) GSViz.
Figure 12: Average response time per batch of all steps.

Total visualization time. To show the total time of visualizing

the network across all the steps, we collected the total time it took

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 3 3.5 4 4.5 5 5.5 6 6.5 7

G
ra
ph

 D
en
si
ty

Zoom Level

HGC
PEAC

(a) Gowalla.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 3 3.5 4 4.5 5 5.5 6 6.5 7

G
ra
ph

 D
en
si
ty

Zoom Level

HGC
PEAC

(b) Foursquare.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 3 3.5 4 4.5 5 5.5 6 6.5 7

G
ra
ph

 D
en
si
ty

Zoom Level

HGC
PEAC

(c) Twitter.
Figure 10: Graph density on different zoom levels (fixed batch size using DRUM).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 2.5 3 3.5 4 4.5 5 5.5 6

R
es
po
ns
e
tim

e
(s
)

Interval range (months)

FDEB
PEB

(a) Gowalla.

 0

 2

 4

 6

 8

 10

 12

 2 2.5 3 3.5 4 4.5 5 5.5 6

R
es
po
ns
e
tim

e
(s
)

Interval range (months)

FDEB
PEB

(b) Foursquare.

 0

 2

 4

 6

 8

 10

 12

 2 2.5 3 3.5 4 4.5 5 5.5 6

R
es
po
ns
e
tim

e
(s
)

Interval range (months)

FDEB
PEB

(c) Twitter.
Figure 11: Bundling time per batch for different slicing intervals.

GSViz: Progressive Visualization of Geospatial Influences in Social Networks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

 0

 100

 200

 300

 400

 500

 0 0.5 1 1.5 2 2.5

R
es
po
ns
e
Ti
m
e
(s
)

Query Selectivity (%)

Bundling
Clustering

DB querying

(a) non-progressive.

0
200
400
600
800
1000
1200
1400

0 0.5 1 1.5 2 2.5

Re
sp
on
se

Tim
e(
s)

Query Selectivity (%)

Bundling
Clustering

DB querying

(b) Baseline.

0
200
400
600
800
1000
1200
1400

0 0.5 1 1.5 2 2.5

Re
sp
on
se

Tim
e(
s)

Query Selectivity (%)

Bundling
Clustering

DB querying

(c) GSViz.
Figure 13: Total response time of all the steps.

to issue a single query to the database and process the data in a

single batch. We call this method non-progressive. Figure 13a shows
the performance for keyword conditions with different selectivity

values. As the network size increased, the total time increased

mostly to query the database and to cluster the vertices up to 7

minutes, where the user waits in the dark not knowing if the request

was successful or not. Conversely, Figures 13b and 13c show the

total response time of all the batches when the computation is

progressive. As the network size increased, the total time increased

due to the increase in the number of batches. GSViz’s total time

was usually half the time of the baseline to visualize the entire

network. The baseline took about 23 minutes to query the database,

cluster the vertices, and bundle the super edges on a network of

500K edges. GSViz took 10 minutes to show the same network.

Comparison with existing systems.We compared GSViz with
two existing popular graph visualization systems, namely Tableau [32]

(version 2021.2) and Tulip [2] (version 5.5.1). We chose Tableau due

to its capability of doing middleware-based visualizations. We chose

Tulip since it supports edge bundling. As these two systems could

not be installed on Ubuntu 14 OS, we used a machine that supported

all three systems. It had an Intel Core i5, 8GB RAM, and a 500GB

hard disk, runningMacOS 10.15.7 and PostgreSQL 12.5. Tableau and

Tulip were not open-source, hence we used a stopwatch to measure

the end-to-end performance of all three systems to visualize the

network. We used database logging to measure the database query

time. Tulip was an in-memory solution, and the largest network it

could load had more than 900𝐾 nodes and 500𝐾 edges with a file

size of 63𝑀𝐵. It filtered the tweets using a keyword that resulted

in a network of 10𝐾 edges, and this step took 11.55 seconds. It took

additional 74.4 seconds to do edge bundling.

Tableau and GSViz support middleware-based visualization us-

ing a database, so we used the Twitter dataset. We filtered the

network on a keyword condition that resulted in more than 200𝐾

edges. Tableau visualized the network on a map without any simpli-

fication. It took 19.49 seconds, including 15.81 seconds for querying

the database. While its results were retrieved efficiently, the user

had to wait for a long time before seeing any results. Moreover, the

network clutter significantly hindered the user experience. On the

contrary, GSViz retrieved the results progressively in 39 batches,

each within 500 ms. The total time was 71.00 seconds, including

54.52 seconds for all the mini-queries, and 16.48 seconds for the

steps of vertex clustering and edge bundling.

6.5 A User Study
We conducted a study to evaluate the user experience in GSViz.
We mainly considered two methods: 1 a baseline method using

non-incremental HGC and FDEB to show its best visual quality,

and 2 GSViz using incremental PEAC and PEB. The goal of the

user study is to answer the following question: “How do the two

methods differ in terms of visualization quality?”

We invited 29 users, and each spent about 15minutes to complete

it. We generated 12 different sets from variations of 3 network sizes

using different keywords at 4 zoom levels. The size of the network

ranged from 10K to 100K raw edges. The zoom level ranged from

an overview of North and Central America to a level of a few states

in the US. Each set had 3 different methods, resulting in a total of

36 images. We first showed the result of the original network as

is. We then showed the visual result yielded from the baseline and

GSViz presented anonymously to the participants. To make the

comparison fair for the baseline, we fixed the number of clusters

and asked questions independently.

We used two metrics to measure the visualization quality:

(1) Readability [24], which indicates how easy it is to read the vi-

sualized network. To measure the readability, we asked the

participants to subjectively answer a question for each simpli-

fied network: “𝑄 : Rate how cluttered you think the network is.” .
The answer is a rating score of 1 (very cluttered) up to 5 (very

sparse).

(2) Task faithfulness [24], which indicates how accurate the visual-

ization of the simplified network is to correctly perform tasks.

To measure the faithfulness, we asked the participants to an-

swer analytical multiple-choice questions, each of which had 4

choices with only one correct answer. A score of 0 means the

network is unfaithful and a score of 1 indicates a very faithful

network [24]. All of the questions had the following template:

“𝑄 : Which of the points, highlighted with green boxes, has more
original tweets compared to reply-to tweets?”

Figure 14 shows sample images given to the users including labels

to indicate the randomly chosen clusters in the questions.

Original GSVizBaseline

Figure 14: Example network visualizations in the user study
at one zoom level.

The results are shown in Table 3. The average response time

using Baseline was 4,473ms while GSViz was 631ms showing much

higher performance. As the network size increased, the time dif-

ference also increased. This increase was more noticeable in the

baseline. The average readability rating of Baseline was 2.3, which

means the network was perceived as cluttered. GSViz’s average
readability rating was 2.9, which indicates that the network was

perceived as not cluttered nor sparse. The average faithfulness

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Alsudais, et al.

Table 3: User study results. The reported numbers for the vi-
sualization quality are represented as “A|B,” where “A” is the
average score given by all the participants and “B” is the stan-
dard deviation. Compared to the baseline, GSViz was much
more efficient and had comparable visualization quality.

Network
Size

Time per
batch (ms)

Visualization Quality
Readability Faithfulness

baseline GSViz baseline GSViz baseline GSViz

10K 648.70 525.20 2.59|0.11 3.28|0.26 0.82|0.11 0.82|0.09

50K 2,603.54 635.42 2.15|0.17 2.85|0.13 0.53|0.25 0.63|0.33

100K 10,165.61 733.67 2.09|0.23 2.48|0.21 0.75|0.32 0.79|0.36

score of Baseline was 0.70, it means that the network was faithful.

GSViz had a better average faithfulness score of 0.74. The user study
showed that, compared to the Baseline, GSViz had much higher

performance and produced visualization with comparable quality.

7 CONCLUSION
In this paper, we presented GSViz, a system to enable progressive

visualization of geo-social networks. We first demonstrated how

to improve incremental spatial clustering to make it edge-aware

to reduce visual clutter. We also studied supporting incremental

edge bundling by storing previous edges as nodes in a novel tree

index called PEB-tree to optimize the traversal and processing of

bundling edges. Moreover, we discussed the integration of the two

techniques and solved new challenges. Lastly, we conducted an

extensive evaluation of GSViz compared to baseline algorithms for

spatial clustering and edge bundling. The experiments also included

a user study to evaluate the quality of the produced visualization.

The results showed that the techniques can not only support effi-

cient, responsive visualization of networks progressively but also

produce high-quality simplified network visualization.

Future Work. GSViz stores the clustering hierarchy and the PEB-

tree in memory and follows a heuristic to reduce the tree size by

merging nodeswhen a tree-size threshold is met.We plan to devise a

cost-based technique to reduce the tree size given a memory budget.

Another improvement is to propose an objective to trade-off the

visualization accuracy and performance efficiency. Currently,GSViz
follows a heuristic and greedy approach to clustering the vertices

and bundling the edges efficiently. The algorithm is bounded by

the range radius 𝜌 for clustering and by the compatibility score in

edge bundling, so the quality and accuracy is not compromised.

REFERENCES
[1] James Abello, Frank van Ham, and Neeraj Krishnan. 2006. ASK-GraphView: A

Large Scale Graph Visualization System. IEEE Trans. Vis. Comput. Graph. 12, 5
(2006).

[2] Reda Alhajj and Jon G. Rokne (Eds.). 2018. Encyclopedia of Social Network Analysis
and Mining, 2nd Edition. Springer.

[3] Syed Mohd Ali, Noopur Gupta, Gopal Krishna Nayak, and Rakesh Kumar Lenka.

2016. Big data visualization: Tools and challenges. In (IC3I).
[4] David Auber. 2004. Tulip - A Huge Graph Visualization Framework. In Graph

Drawing Software. 105–126.
[5] Jie Bao, Yu Zheng, David Wilkie, and Mohamed F. Mokbel. 2015. Recommenda-

tions in location-based social networks: a survey. GeoInformatica 19, 3 (2015).
[6] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: An

Open Source Software for Exploring and Manipulating Networks. In ICWSM.

[7] Trinidad Beleche, Joel Ruhter, Allison Kolbe, Jessica Marus, Laina Bush, and BD

Sommers. 2021. COVID-19 Vaccine Hesitancy: Demographic Factors, Geographic

Patterns, and Changes Over Time. Published online 27 (2021).
[8] Nikos Bikakis, John Liagouris, Maria Krommyda, George Papastefanatos, and

Timos K. Sellis. 2016. graphVizdb: A scalable platform for interactive large graph

visualization. In ICDE.

[9] Chien-Yu Chen, Shien-Ching Hwang, and Yen-Jen Oyang. 2002. An Incremental

Hierarchical Data Clustering Algorithm Based on Gravity Theory. In PAKDD,
Vol. 2336.

[10] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility:

user movement in location-based social networks. In SIGKDD.
[11] Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li. 2008.

Geometry-Based Edge Clustering for Graph Visualization. IEEE Trans. Vis. Com-
put. Graph. 14, 6 (2008).

[12] Ahmed Eldawy,Mohamed F.Mokbel, and Christopher Jonathan. 2016. HadoopViz:

A MapReduce framework for extensible visualization of big spatial data. In ICDE.
[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, and Xiaowei Xu.

1998. Incremental Clustering for Mining in a Data Warehousing Environment.

In VLDB.
[14] M Fiedler et al. 2004. State-of-the-art with regards to user-perceived Quality of

Service and quality feedback. In Euro-NGI Deliverable D. WP. JRA. 6. 1. 1.
[15] Tao Guo, Kaiyu Feng, Gao Cong, and Zhifeng Bao. 2018. Efficient Selection of

Geospatial Data on Maps for Interactive and Visualized Exploration. In SIGMOD.
[16] Su Yeon Han, Keith C. Clarke, and Ming-Hsiang Tsou. 2017. Animated Flow

Maps for Visualizing Human Movement: Two Demonstrations with Air Traffic

and Twitter Data. In SIGSPATIAL Workshop on Analytics for Local Events and
News.

[17] Hierarchical Clustering. Hierarchical Clustering. https://github.com/mapbox/

supercluster

[18] Danny Holten and Jarke J. van Wijk. 2009. Force-Directed Edge Bundling for

Graph Visualization. Comput. Graph. Forum 28, 3 (2009).

[19] Christophe Hurter, Ozan Ersoy, and Alexandru Telea. 2013. Smooth bundling of

large streaming and sequence graphs. In PacificVis.
[20] Jianfeng Jia, Chen Li, and Michael J. Carey. 2017. Drum: A rhythmic approach to

interactive analytics on large data. In BigData.
[21] Guoliang Li, Shuo Chen, Jianhua Feng, Kian-Lee Tan, and Wen-Syan Li. 2014.

Efficient location-aware influence maximization. In SIGMOD.
[22] Jianxin Li, Timos Sellis, J. Shane Culpepper, Zhenying He, Chengfei Liu, and

Junhu Wang. 2018. Geo-Social Influence Spanning Maximization. In ICDE.
[23] JaroslavNesetril and Patrice Ossona deMendez. 2012. Sparsity - Graphs, Structures,

and Algorithms. Algorithms and combinatorics, Vol. 28. Springer.

[24] Quan Hoang Nguyen, Peter Eades, and Seok-Hee Hong. 2017. Towards Faithful

Graph Visualizations. CoRR abs/1701.00921 (2017). arXiv:1701.00921

[25] Yongjoo Park, Michael J. Cafarella, and Barzan Mozafari. 2016. Visualization-

aware sampling for very large databases. In ICDE.
[26] Viju Raghupathi, Jie Ren, and Wullianallur Raghupathi. 2020. Studying public

perception about vaccination: A sentiment analysis of tweets. International
journal of environmental research and public health 17, 10 (2020).

[27] Sajjadur Rahman, MaryamAliakbarpour, Hidy Kong, Eric Blais, Karrie Karahalios,

Aditya G. Parameswaran, and Ronitt Rubinfeld. 2017. I’ve Seen "Enough": Incre-

mentally Improving Visualizations to Support Rapid Decision Making. VLDB
(2017).

[28] Ruth Rosenholtz, Yin Li, Zhenlan Jin, and Jonathan Mansfield. 2010. Feature

congestion: A measure of visual clutter. Journal of Vision - J VISION 6 (06 2010).

[29] UMN Sarwat Foursquare Dataset (September 2013). http://www-users.cs.umn.

edu/~sarwat/foursquaredata/

[30] David Selassie, Brandon Heller, and Jeffrey Heer. 2011. Divided Edge Bundling

for Directional Network Data. IEEE Trans. Vis. Comput. Graph. 17, 12 (2011).
[31] Yongxia Skadberg and James R. Kimmel. 2004. Visitors’ flow experience while

browsing a Web site: its measurement, contributing factors and consequences.

Computers in Human Behavior 20, 3 (2004).
[32] Tableau Website. Tableau Website. https://www.tableau.com

[33] Wenbo Tao, Xiaoyu Liu, Çagatay Demiralp, Remco Chang, and Michael Stone-

braker. 2019. Kyrix: Interactive Visual Data Exploration at Scale. In CIDR.
http://cidrdb.org/cidr2019/papers/p70-tao-cidr19.pdf

[34] Alexandru Telea and Ozan Ersoy. 2010. Image-Based Edge Bundles: Simplified

Visualization of Large Graphs. Comput. Graph. Forum 29, 3 (2010).

[35] Christian Tominski, James Abello, and Heidrun Schumann. 2009. CGV - An

interactive graph visualization system. Comput. Graph. 33, 6 (2009).
[36] Cagatay Turkay, ErdemKaya, Selim Balcisoy, and Helwig Hauser. 2017. Designing

Progressive and Interactive Analytics Processes for High-Dimensional Data

Analysis. IEEE Trans. Vis. Comput. Graph. 23, 1 (2017).
[37] Hong Wei, Jagan Sankaranarayanan, and Hanan Samet. 2017. Measuring Spatial

Influence of Twitter Users by Interactions. In SIGSPATIAL Workshop on Analytics
for Local Events and News.

[38] Jia Yu and Mohamed Sarwat. 2020. Turbocharging Geospatial Visualization

Dashboards via a Materialized Sampling Cube Approach. In ICDE.
[39] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1996. BIRCH: An Efficient

Data Clustering Method for Very Large Databases. In SIGMOD.
[40] Wen-Yuan Zhu, Wen-Chih Peng, Ling-Jyh Chen, Kai Zheng, and Xiaofang Zhou.

2016. Exploiting Viral Marketing for Location Promotion in Location-Based

Social Networks. ACM Trans. Knowl. Discov. Data 11, 2 (2016).

https://github.com/mapbox/supercluster
https://github.com/mapbox/supercluster
https://arxiv.org/abs/1701.00921
http://www-users.cs.umn.edu/~sarwat/foursquaredata/
http://www-users.cs.umn.edu/~sarwat/foursquaredata/
https://www.tableau.com
http://cidrdb.org/cidr2019/papers/p70-tao-cidr19.pdf

GSViz: Progressive Visualization of Geospatial Influences in Social Networks SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA

A EDGE-AWARE CLUSTERING ALGORITHM
Algorithm 1: Clustering vertices in a batch of edges 𝐸

Input: A new batch of edges 𝐸; a set of existing clusters 𝐶;

and a range radius 𝜌

Output: Updated set of clusters 𝐶

1 foreach edge 𝑒 = (𝑙, 𝑟) in 𝐸 do
2 if distance(𝑙 ,𝑟) ≤ 𝜌 then
3 merge them to a point𝑚;

4 insert𝑚 to its nearest cluster;

5 continue;
6 end
7 𝐶𝑙 = 𝐶 .rangeSearch(𝑙 , 𝜌) ; // find near clusters

8 𝐶𝑟 = 𝐶 .rangeSearch(𝑟 , 𝜌);

9 if 𝐶𝑙 is ∅ then
10 create a cluster 𝑐𝑙 for 𝑙 and add 𝑐𝑙 to 𝐶𝑙 ;

11 end
12 if 𝐶𝑟 is ∅ then
13 create a cluster 𝑐𝑟 for 𝑟 and add 𝑐𝑟 to 𝐶𝑟 ;

14 end
15 if ∃𝑐𝑙 ∈ 𝐶𝑙 , ∃𝑐𝑟 ∈ 𝐶𝑟 with a super edge (𝑐𝑙 , 𝑐𝑟) then
16 𝑐𝑙 .insert(𝑙); 𝑐𝑟 .insert(𝑟);

17 else
18 insert 𝑙 to its nearest cluster;

19 insert 𝑟 to its nearest cluster;

20 create a super edge between the two clusters;

21 end
22 end
23 return 𝐶;

B EXTENDING EDGE-AWARE CLUSTERING
Edge-aware merging of clusters. The edge-aware clustering

discussed so far is utilized on newly added edges and affects the

decision of inserting both vertices into existing clusters or creating

new clusters. Recall that our motivation for clustering the points is

to reduce the clutter by reducing the number of super edges. We

take advantage of the greedy approach of this clustering algorithm

to further reduce the number of super edges by merging two su-

per edges into one. We check if two super edges can be merged

whenever a new point is inserted into a cluster.

Figure 15 demonstrates the merge operation due to the insertion

of a new point into cluster 𝑎. When the new point is inserted into

cluster 𝑎, the cluster’s center may shift due to the new addition, as

shown in Figure 15-i. Over time, this shift may cause the cluster’s

center to be within the range radius 𝜌 of a nearby cluster, such

as clusters 𝑒 and 𝑐 around 𝑎 as shown in Figure 15-ii. We say two

clusters are “overlapping” if their centers are within 𝜌 . We take

this opportunity to merge cluster 𝑎 with one of its neighboring

clusters to further reduce the clutter. However, if we merge the two

clusters without considering the super edges connected to them,

we may not solve the problem of reducing the number of super

edges. For example, if we merge the clusters 𝑒 and 𝑎, the number

of super edges remains the same. To solve this problem, we add

one more condition to the merge operation: two clusters can be

merged only if their corresponding other vertices connected to

the clusters are also overlapping. Using this approach, clusters 𝑎

and 𝑐 are merged into a larger set cluster 𝑔, where its center is the

weighted average of the centers of the two clusters. Similarly, the

other clusters connected to 𝑔 are also merged, i.e., merge 𝑏 and 𝑑

into a cluster ℎ, as shown in Figure 15-iii. Notice that clusters 𝑏 and

𝑑 were not merged prior to the addition of the new point as the

condition was not satisfied.

ii) Range radius
around the centroid of
the shifted cluster to
find nearby clusters

dc

i) Newly inserted
point causes the
cluster centroid to
shift

ba

new
point

range
search

existing
cluster

cluster
center

super
edge

f

e

f

e

hg
dc

ba
f

e

iii) Merge two
super edges their
corresponding
vertices overlap

dc

ba

Figure 15: Progressive merging of super edges.We omitted the

cluster shape for notational simplicity.

C PROGRESSIVE EDGE BUNDLING
ALGORITHM

Algorithm 2: Incremental maintenance of PEB-tree and

edge bundling

Input: A PEB-tree 𝑇 of edges of previous batches; and a

new batch of edges 𝐸;

Output: Updated 𝑇 and a set of curved edges for 𝐸.

// Update 𝑇

1 foreach edge 𝑒 in 𝐸 do
2 𝑛 = create a new node (𝑒 ,1);

// get lowest non-leaf node with an edge

compatible with 𝑒

3 𝑛′ = 𝑇 .traverse(𝑛);
4 if 𝑛′ is not found then
5 𝑛′ = create a new parent node for 𝑛;

6 end
7 𝑛′.insert(𝑛) ; // insert 𝑛 as a child of 𝑛′

8 end
// Bundle edges in 𝐸

9 𝑆 = ∅;
10 foreach edge 𝑒 in 𝐸 do
11 let 𝑛′ (𝑒′, 𝜔) be the corresponding parent node of 𝑒;

12 𝑒 = Edge-Curving(𝑒 , 𝑒′, 𝜔) ; // drag 𝑒 towards 𝑒′

13 𝑆 .add(𝑒) ;

14 end
15 return (𝑇, 𝑆) ;

SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Alsudais, et al.

D REDUCTION OF VISUAL CLUTTER
EXPERIMENTAL RESULT.

We report the visual quality of the two methods used in the user

study across the different zoom levels. We used two common met-

rics to measure the visual display clutter, namely “feature conges-

tion” and “subband entropy” [28].

Figure 16 shows the percentage reduction on the visual clutter

score using both metrics. The higher the percentage, means the

reduction was more. Figure 16a shows that the baseline and GSViz
on average reduced the clutter score by 26% and 35%, respectively.

Figure 16b shows that the baseline reduced the subband entropy

clutter score by 15% at zoom level 3.5 (which showed the entire US),

and 7% at zoom level 5 (which showed cities). GSViz reduced the

score by 22% and 11%, respectively. We observe that both methods

reduced the visual clutter score compared to the original graph,

and GSViz achieved a better reduction. This finding was consistent

with the readability result in the user study.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

3.5 4 4.5 5

F
e
a
tu
re

 C
o
n
g
e
s
tio
n

 R
e
d
u
c
tio
n

 (
%
)

Zoom Level

Baseline
GSViz

(a) Feature Congestion.

0

5

10

15

20

25

3.5 4 4.5 5S
u
b
b
a
n
d

 E
n
tr
o
p
y
 R
e
d
u
c
tio
n

 (
%
)

Zoom Level

Baseline
GSViz

(b) Subband Entropy.

Figure 16: Reduction of visual clutter score compared to the
original network.

	Abstract
	1 Introduction
	1.1 Related Work

	2 GSViz System Overview
	3 Incremental Edge-Aware Clustering of Geo-social Network Vertices
	3.1 Incremental Clustering of Network Vertices
	3.2 Achieving Edge-Awareness
	3.3 Improving Computational Efficiency

	4 Incremental Edge Bundling for Network Simplification
	4.1 Problem Specification
	4.2 PEB-Tree
	4.3 Incremental Edge Bundling Using PEB-tree

	5 Integrating Vertex Clustering and Edge Bundling
	5.1 Updating Edges Affected by Clustering
	5.2 Supporting Zooming and Panning

	6 Experiments
	6.1 Experiment Setting
	6.2 Progressive Vertex Clustering
	6.3 Progressive Edge Bundling
	6.4 Integrating Both Techniques
	6.5 A User Study

	7 Conclusion
	References
	A Edge-aware clustering Algorithm
	B Extending Edge-Aware Clustering
	C Progressive Edge Bundling Algorithm
	D Reduction of visual clutter Experimental result.

