Modeling Anisotropic Surface Reflectance with Example-Based Microfacet Synthesis

Jiaping Wang¹, Shuang Zhao², Xin Tong¹, John Snyder³, Baining Guo¹

Microsoft Research Asia¹ Shanghai Jiao Tong University² Microsoft Research³

SIGGRAPH2008

Surface Reflectance

satin

metal

Anisotropic Surface Reflectance

anisotropic

isotropic

Our Goal

modeling spatially-varying anisotropic reflectance

Surface Reflectance in CG

- 4D BRDF $\rho(o,i)$
 - Bidirectional Reflectance Distribution Function
 - how much light reflected wrt in/out directions

Surface Reflectance in CG

- 4D BRDF $\rho(o,i)$
 - Bidirectional Reflectance Distribution Function
 - how much light reflected wrt in/out directions
- 6D Spatially-Varying BRDF: SVBRDF $\rho(x,o,i)$
 - BRDF at each surface point x

Related Work I

- parametric BRDF models
 - compact representation
 - easy acquisition and fitting
 - lack realistic details

ground truth

parametric model [Ward 92]

Related Work II

- tabulated SVBRDF
 - realistic
 - large data set
 - difficult to capture
 - lengthy process
 - expensive hardware
 - image registration

light dome [Gu et al 2006]

Microfacet BRDF Model

surface modeled by tiny mirror facets

$$\rho_s(x,o,i) = \frac{D(x,h)S(x,o)S(x,i)F(x,o,i)}{4(i\cdot n)(o\cdot n)}$$
[Cook 82]

Microfacet BRDF Model

surface modeled by tiny mirror facets

Microfacet BRDF Model

Normal Distribution Function (NDF)

$$\rho_s(x,i,o) \backsim D(x,h) \quad h = \frac{i+o}{\|i+o\|}$$

- 2D function of the half-way vector h
- term dominates surface appearance

Challenge: Partial Domains

- samples from a single viewing direction
 - cover only a sub-region Ω of NDF
 - How to obtain the full NDF?

Key Observation: Exploit Spatial Redundancy

 find surface points with *similar but differently rotated* NDFs

partial NDF at each surface point

material sample

Example-Based Microfacet Synthesis

Comparison

appearance under novel viewing/lighting

ground truth

our model

isotropic Ward model

anisotropic Ward model

Overall Pipeline

Capture BRDF slice

Partial NDF Recovery

Microfacet Synthesis

Device Setup

Camera-LED system

Capturing Process

Modeling Process

- Partial NDF Recovery
- Example-Based Microfacet Synthesis

NDF Recovery

invert the microfacet BRDF model

Partial NDF Recovery

- straightforward solution leads to biased result
 - iteratively solve for NDF and shadow term
 - cross-talk between two terms for incomplete data

Partial NDF Recovery (con't)

minimize the cross-talk

- isotropically constrain shadow term in each iteration

Recovered Partial NDF

[Ngan et al. 2005]

our result

Microfacet Synthesis

Microfacet Synthesis (con't)

- straightforward impl. is too slow:
 - expensive distance calculation
 - huge number of surface points (search)
 - hundreds of rotation angles (alignment)

Accelerating Synthesis

- NDF Clustering
 - complete NDFs on a smaller set of representatives (1%)
 - search candidates from representatives only
- Search Pruning
 - approximate nearest neighbor acceleration [Mount 97]
 - key = histogram

Model Validation

- full SVBRDF dataset [Lawrence et al. 2006]
 - data from one view for training
 - data from other views for validation

Validation Result

Ground Truth from IST Data Set

Our Synthesized Result

Rendering Result: Satin

Rendering Result: Wood

Rendering Result: Brushed Metal

Conclusion

- model surface reflectance via microfacet synthesis
 - general and compact representation
 - high resolution (spatial & angular), realistic result
 - easier to acquire from real world material samples
 - singe-view capture
 - cheap device
 - shorter capturing time

Thank You!

