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Abstract
Cloth is essential to our everyday lives; consequently, visu-
alizing and rendering cloth has been an important area of 
research in graphics for decades. One important aspect con-
tributing to the rich appearance of cloth is its complex 3D 
structure. Volumetric algorithms that model this 3D structure 
can correctly simulate the interaction of light with cloth to 
produce highly realistic images of cloth. But creating volumet-
ric models of cloth is difficult: writing specialized procedures 
for each type of material is onerous, and requires significant 
programmer effort and intuition. Further, the resulting mod-
els look unrealistically “perfect” because they lack visually 
important features like naturally occurring irregularities.

This paper proposes a new approach to acquiring volume 
models, based on density data from X-ray computed tomog-
raphy (CT) scans and appearance data from photographs 
under uncontrolled illumination. To model a material, a CT 
scan is made, yielding a scalar density volume. This 3D data 
has micron resolution details about the structure of cloth 
but lacks all optical information. So we combine this density 
data with a reference photograph of the cloth sample to infer 
its optical properties. We show that this approach can eas-
ily produce volume appearance models with extreme detail, 
and at larger scales the distinctive textures and highlights 
of a range of very different fabrics such as satin and velvet 
emerge automatically—all based simply on having accurate 
mesoscale geometry.

1. INTRODUCTION
Cloth is a fundamental material in our day-to-day lives, and 
creating photo-realistic renderings of cloth has been an 
active research topic in computer graphics for decades, with 
applications in areas including virtual prototyping, enter-
tainment (movies and games), and retail.

One important aspect contributing to the appearance 
of cloth is its complex 3D structure, yielding complicated 
textures and reflectance. Further, the structure is irregular, 
causing difficult-to-model, but visually important random-
ness. Volume rendering techniques, which model such 
structure correctly and simulate the interaction of light with 
cloth explicitly, have been explored since the 1990s. These 
approaches address the limitations of usual surface-based 
models, which are visually unsatisfactory because they treat 
cloth as infinitely thin sheets.8, 12, 18 Cloth exhibits a wide 
range of appearance, but shares a common basic structure 
of long, shiny fibers. The thick, fuzzy nature of cloth makes 

volume models a good fit. Further, recent developments7 
have brought enough generality to volume scattering that we 
can begin to render fully physically based volumetric appear-
ance models for cloth, fur, and other thick, non-surface-like 
materials. However, a fundamental problem remains: creat-
ing these volumetric models themselves. Previous work has 
primarily relied on procedural methods (special-purpose 
programs) for modeling these volumes, but this approach 
has limited generality: significant creative effort is needed 
to design these programs for each new material. Further, the 
resulting models look unrealistically “perfect” since they 
lack subtle irregularities that appear in real cloth.

This paper explores an entirely different approach to 
building volume appearance models, focusing particularly 
on cloth. Since cloth’s detailed geometric structure is so 
difficult to model well, we use volume imaging to measure 
structure directly, and then fill in optical properties using a 
reference photograph. We do the latter by solving an inverse 
problem that statistically matches photographs and physi-
cally based renderings.

Many volume imaging technologies have been developed, 
including computed tomography (CT), magnetic resonance, 
and ultrasound, but unlike photographs, the resulting data 
does not directly relate to the optical appearance of the 
material: only to its structure. As a result, volume renderings 
of these images are useful for illustrating hidden internal 
geometry, but not directly for rendering realistic images. 
For instance, a micro CT scan of woven cotton cloth gives a 
detailed view of the interlaced yarns and their component 
fibers, showing exactly how the fibers are oriented and how 
the yarns are positioned, but no information about how they 
interact with light: there is no way to tell whether the fabric 
is black or white or any color in between.

We show in this paper that remarkably little additional 
information is required to extend CT data to a realistic 
appearance model. The value of knowing 3D structure is 
obvious for rendering close-up views where these details 
are visible. But equally importantly, the shape and arrange-
ment of fibers in the material also determines the overall 
appearance of the material—the shape and quality of spec-
ular highlights, and how the visual texture varies with illu-
mination and view. When coupled with the right rendering 
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technology, a simple local model of reflection from fibers 
automatically predicts the characteristic appearance of very 
different materials such as velvet and satin, simply by know-
ing the 3D structure of the material.

The contribution of this paper is to show how to enhance 
the structural information from a CT scan of a small sample 
of fabric by combining it with appearance information from 
a photograph of the material to construct plausible and con-
sistent optical properties; this volumetric appearance model 
produces realistic appearance when rendered using a physi-
cally based volume renderer. We describe our end-to-end 
volume appearance modeling pipeline and demonstrate it 
by acquiring models of cloth with very different appearance, 
ranging from matte to shiny and textured to smooth, captur-
ing their characteristic highlights, textures, and fuzziness.

2. RELATED WORK
We categorize realistic volumetric rendering and modeling 
research in the related areas of surface appearance modeling, 
cloth reflectance modeling, and cloth structure modeling.

Appearance modeling. Because standard surface-oriented 
models are inadequate for complex thick materials, research-
ers and practitioners have had to fall back on image-based 
rendering methods such as Bidirectional Texture Functions 
(BTF), which essentially consist of an exhaustive set of 
photographs of the surface under all possible illumination 
and viewing directions.4, 5 Although BTFs produce realistic 
results for many otherwise difficult materials, the image-
based approach requires a  significant amount of storage, 
and is often not of enough resolution for capturing high 
glossiness, and generally fails to capture or predict grazing 
angles, making silhouettes and edges unrealistic.

Two prominent early volume appearance models are 
Kajiya and Kay’s8 fur rendering and Perlin and Hoffert’s12 
“hypertexture.” Although it has since become more common 
to render hair and fur using discrete curves, their results 
demonstrate the value of volumetric models for complex, 
barely resolved detail. A similar approach is the Lumislice 
representation3, 18 which focused on modeling and render-
ing knitwear. Magda and Kriegman11 describe a method 
for acquiring volumetric textures that combine a volumetric 
normal field, local reflectance functions, and occupancy 

information. All these approaches need significant mod-
eling effort. Recently, Jakob et al.7 introduced a principled 
formulation for rendering anisotropic, oriented volumetric 
media, which opens possibilities for more physically based 
volume appearance models.

Cloth reflectance models. Cloth has perennially appeared 
in graphics as a source of complicated optical behavior. 
Westin et al.17 modeled cloth’s reflectance profile by ray-
tracing mesostructure models, which is related to the way 
cloth highlights emerge in our system. Ashikhmin et al.2 
rendered velvet and satin using hand-designed microfacet 
distributions. Adabala et al.1 proposed a rendering method 
for woven cloth based on microfacet models, and Irawan 
and Marschner6 presented an elaborate model, based on the 
analysis of fiber tangent directions in a range of woven fab-
rics, and validated it against reflectance measurements. Each 
of these methods achieved good appearance relative to the 
then-current state of the art, but they are all specially hand-
designed models for individual materials or specific classes.

Since our approach is based on a completely general 
system that only has a volume with fibers as its underlying 
assumption, we have few fundamental limitations on what 
textile or textile-like materials can be handled. Further, by 
importing volumetric detail from the real world, we can 
achieve good appearance in close-ups, and at silhouettes, 
edges, and corners, where  surface models appear unrealisti-
cally smooth and flat.

Cloth structure. The geometry of cloth structure has been 
studied for decades.9, 13 More recently, X-ray tomography, using 
synchrotron facilities16 or the rapidly improving micro-CT 
scanners,10, 15 has been used to examine the structure of textiles 
in several applications. These studies focus on extracting geo-
metric information related to a material’s mechanical proper-
ties, but have also produced some analysis tools15 that we use.

3. OVERVIEW
The goal of our system is to create realistic volumetric 
appearance models of cloth. We need to generate a sam-
pled 3D volume that describes the optical properties of the 
material at each voxel so that, when rendered with a physi-
cally based rendering system, it realistically reproduces the 
appearance of real cloth (Figure 1).

Figure 1. We build volumetric appearance models of complex materials such as velvet using CT imaging: (a) CT data gives scalar density over 
a small volume; (b) we extract fiber orientation (shown in false color) and tile larger surfaces; and (c) we match appearance parameters to 
photographs to create a complete appearance model. Both fine detail and the characteristic highlights of velvet are reproduced.

(a) (b) (c)
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Because cloth is made of fibers, we need a volume scat-
tering model that can handle the anisotropy of fibers; we 
chose a modified version of the model proposed by Jakob 
et al.7 (detailed in Section 4) for this purpose. This model 
requires an optical density, an albedo, and two phase func-
tion parameters: an orientation vector and a specular lobe 
width. Intuitively, the optical density describes how often 
light scatters within the cloth; the albedo and the phase 
function respectively capture the fraction of light being 
absorbed and how light changes its direction at each scat-
tering location.

Our technique begins with a micro CT scan of a small 
area of material, showing detail at the level of individual 
fibers over a fraction of a square centimeter. Such scans 
can readily be ordered at moderate cost (a few hundred 
US dollars) from a number of facilities, and suitable desk-
top CT scanners are becoming available. In a sequence of 
three stages (Figure 2), we process and augment this data, 
ending with a volume that defines the required scattering 
model parameters using density and orientation fields 
derived from the CT data, plus three global parameters: the 
albedo, the lobe width, and a density multiplier that scales 
the density field.

The first stage (Section 5) processes the density volume 
to augment it with orientation information and to remove 
noise by convolving the data with 3D oriented filters to detect 
oriented structures, and thresholding to separate meaning-
ful structure from noise. This stage produces the density 
and orientation fields.

This volume can be rendered only after the global opti-
cal parameters are determined. The second stage (Section 6) 
makes use of a single photograph of the material under 
known (but not controlled) lighting, and associates optical 
properties with the oriented volume from the first stage by 
matching the texture of the rendered volume to the texture 
of the photograph.

The resulting volume model is good for rendering small 
samples; the third stage takes this small patch and maps 
it over a large surface of cloth, using randomized tiling to 
replicate the material and shell mapping14 to warp it.

The resulting renderings (Section 7) show that this 
unique approach to appearance modeling, leveraging 
direct information about mesoscale geometry, produces 
excellent appearance from the small scale, where the 

geometry itself is visible, to the large scale, where the direc-
tional scattering properties naturally emerge from the 
measured 3D structure. The characteristic appearance of 
difficult materials such as velvet and satin is predicted by 
our rather minimal volume scattering model, even though 
we use no light scattering measurements that could tell 
these materials apart, because accurate geometric infor-
mation is available.

4. FIBER SCATTERING MODEL
We model light transport using the anisotropic radiative 
transfer equation (RTE) from Jakob et al.7 which states that 
within participating media,

where ss and st : S2 →  are the anisotropic scattering and 
extinction coefficients, and fp is the phase function. Spatial 
dependence has been omitted for readability.

This equation can be understood as a generalization of 
the isotropic RTE that adds support for a directionally vary-
ing amount of “interaction” with a medium. For instance, 
the directional dependence of st(ω) is necessary to model 
the effect that light traveling parallel to coherently aligned 
fibers faces less obstruction than light traveling perpendicu-
lar to the fibers.

To specify the problem to be solved, we must choose 
a compatible scattering model that will supply internally 
consistent definitions of st, ss, and fp. For this purpose, we 
use the micro-flake model proposed in the same work. This 
volume analogue of microfacet models represents different 
kinds of volume scattering interactions using a directional 
flake distribution D(m) that describes the orientation m of 
(unresolved) idealized mirror flakes at every point in space. 
Similar to microfacet models, the phase function then 
involves evaluating D(m) at the half-way direction between 
the incident and outgoing direction. For completeness, we 
reproduce the model’s definition as follows:

Figure 2. Our volume appearance modeling pipeline: (a) CT images are acquired; (b) the density field and orientation field of the volume 
are created; and (c) optical parameters of the volumetric model are assigned by matching statistics of photographs with rendered images. 
(d) Larger models are rendered using our acquired volumetric appearance and geometry models.

(a) Micro CT images (b) Reconstructed density field
and orientation field

(c) Appearance matching (d) Rendered results
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with the axis d, consisting of a difference of Gaussians in 
distance from the axis: q(d; p) := −2 exp(−ur2) + exp(−wr2), 
where r = ‚p − (p × d)d‚ is the distance from the filter’s axis 
and the parameters u and w (normally u < w) are empirically 
adjusted based on the size of the fibers present in the sam-
ple (see Figure 3).

The raw CT volume is thresholded at a value εd, resulting in 
a binary volume b: for any x, set b(x) to 0 if CTraw(x) ³ εd and to 
1 otherwise. Then b is convolved with the filter q for each of a 
fixed set of orientations: J(x, d) := åpÎV q(d; p) b(x + p), where V 
is a cubic volume of edge length h.

As shown in Figure 3, the function J reaches a maximum 
value when d equals the fiber’s orientation. So the orienta-
tion field is computed by finding, for each voxel x, the d¢  that 
maximizes J(x, d¢ ) and setting ωω−(x) = d¢ . In our implemen-
tation, we precompute q on a set of directions {di} picked 
from a 32 × 32 × 6 cubemap. Then for each nonempty voxel x, 
we set ω−(x) = dj, where j = arg maxi  J(x, di).

5.2. Denoising CT images
The CT images usually contain considerable amounts of 
noise, particularly for low-density materials like our cloth 
samples, and removing the noise is critical for obtaining 
good quality data for rendering. Since cloth structure is 
always oriented, and the noise is generally fairly isotropic, 
the value of J is useful in noise removal.

In our system we use two thresholds to remove noise. 
The first threshold εd is on the voxel values themselves and 
is used to remove faint background noise that would other-
wise cloud the model. This thresholding creates the binary 
volume b. The second threshold εJ is on the value of J and is 
used to remove isotropic noise that has density values that 
are too high to remove by the first threshold. We set

5.3. Data replication
The volume data needs to be replicated for rendering since 
our samples are very small. We explored example-based syn-
thesis in Zhao et al.19 which provides sophisticated tools to do 
this, but it is orthogonal to this paper. Here we consider two 
simple randomized tiling methods to cover the surfaces with 
tiles of volume data drawn from our models without intro-
ducing distracting regular structures. In both methods the 

Here, r denotes the particle density, a is the area of a single 
flake, a is the associated albedo, and h(ω, ω¢ ) := (ω + ω¢ )/
‚ω + ω¢ ‚. Note that the above expressions are simplified 
by assuming the flakes have albedo independent of the 
 scattering angle. This reduces our search space consider-
ably and still leads to a model that can represent scat-
tering interactions with a variety of fibrous materials 
reasonably well.

4.1. Flake distribution
We propose a flake distribution that is convenient to inte-
grate while capturing the same key feature as the one 
proposed by Jakob et al.7 We use the following density 
function, which specifies a truncated Gaussian centered 
around the great  circle perpendicular to the local fiber 
 orientation ω− :

where the standard deviation g determines the roughness of 
the fiber. More precisely, the parameters required to create 
renderings are:

• ω− , the local fiber orientation,
• g, the standard deviation of the flake distribution,
• α, the single scattering albedo of the flakes,
• a and r, the area and density of micro-flakes. Their 

product roughly corresponds to the interaction coeffi-
cient st in traditional isotropic volume rendering, and 
we therefore set them to a multiple of the processed CT 
densities, that is, ar (x) := d × CT(x), where d is a constant 
of proportionality.

Section 5 discusses the steps needed to obtain CT(x) and ω−

(x); in section 6, we describe how to find α, g, and d.

5. CT IMAGE PROCESSING
Micro CT (computed tomography) devices, which use X-ray 
CT methods to examine small to microscopic structures, 
are increasing in availability, and this imaging modality is 
suited to a wide range of materials from which a small sam-
ple can be extracted for scanning.

In this section we describe the process of extracting fiber 
orientation from the CT density volume using a special 
fiber-detecting filter. Following this, we explain the process-
ing steps needed to obtain orientation and density fields 
suitable for rendering.

5.1. Recovering the orientation field
CT images provide a voxelized density field with no direc-
tion information. Since our optical model requires an orien-
tation for the phase function, it is necessary to reconstruct 
an orientation for every nonempty voxel. Our approach uses 
oriented filters to detect fibers, based on similar filters used 
by Shinohara et al.,15 to locate fibers in CT data.

To detect a fiber with orientation d at location p, Shino-
hara proposes a cylindrically symmetric filter oriented 

Filter q(d; ·)

d x

q ≥ 0
q < 0

b =0(fiber) b =1(background)

x

J has a high value J has a low value

d1

d2

(a) (b) (c)

Figure 3. Computing function J in 2D: (a) shape of the filter q; 
(b) when q is aligned to the fiber; (c) when q is unaligned.
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volume using our physically based renderer and to adjust 
the optical parameters to match certain texture statistics of 
the rendered images to statistics of the photograph.

We match two simple statistical measures: the mean pixel 
value and the standard deviation of pixel values, computed 
over corresponding regions of a photograph and a rendering 
of approximately similar geometry. This approach effectively 
matches the image brightness and texture contrast in the 
matching region. We tried other measures, but found that 
the mean and standard deviation measures were simpler 
and robust. Thus, the only information that flows from the 
photograph to the volume model is the mean and standard 
deviation of pixels in a single rectangle.

The appearance matching process involves choosing the 
geometry, camera position, lighting, and matching region. 
These are inherently manual choices, and we used the prin-
ciple of choosing a setup that shows the distinctive features 
of the cloth’s appearance. For instance, we made sure to use 
a configuration where the highlight was visible on the satin. 
Beyond this we did not take any special care in arranging the 
appearance matching inputs, and the results do not appear 
to be sensitive to the details.

6.2. Optimization procedure
As shown in Figure 4, the density multiplier plays a fairly 
complicated role with respect to both measures. Given that 
our forward process, which is essentially Monte Carlo path 
tracing, is quite expensive, we chose to predetermine the 
density multiplier in our implementation by rendering such 
a matrix. Fixing the density multiplier simplifies the inverse 
problem and leads to a practical solution. We found that 
the algorithm is not particularly sensitive to the choice of 

surface is simply covered by a rectangular array of tiles copied 
from the volume, without continuity at the tile boundaries.

For materials without visible regularity, such as velvet 
and felt, each tile on the surface is copied from a rectangular 
region centered in the volume. To provide variation in local 
structure, for each tile this source rectangle is rotated by a 
different random angle. For materials with woven structure, 
such as silk and gabardine, we use a similar approach, but 
use random translations of the source tile instead of rota-
tions. The weave pattern in each sample is manually identi-
fied and a rectangular area is marked that contains an integer 
number of repeats. Then each (smaller) surface tile is chosen 
from a subrectangle that contains a matching section of the 
weave. The result is a tiling that reproduces the correct weave 
pattern and avoids obvious repeating of texture. We then map 
the tiled data to arbitrary surfaces using shell mapping.14

6. APPEARANCE MATCHING
Processing the CT data yields the spatially varying density 
and orientation for the volume. But the optical appearance 
parameters of the model remain to be determined. Since the 
CT scan does not give us the material’s optical properties, 
we make use of a photograph of the material to compute the 
appearance parameters.

To make the problem tractable, we assume that the 
 volume contains the same material, with differences only in 
density and orientation. This is appropriate for fabrics made 
from a single type of fiber, which encompasses many impor-
tant examples. Fabrics containing yarns of different materi-
als are future work. Thus, the appearance parameters that 
must be determined are the same across the whole volume. 
They are: the standard deviation of the flake distribution 
g (corresponding to fiber roughness), the scattering albedo 
α (corresponding to material color), and the density scale 
d (corresponding to opacity). Figure 4 illustrates the effects 
of these parameters.

To match the material’s optical properties, we must use 
photographs of the sample. One approach is to photograph 
the same sample that was scanned, calibrating the camera 
to the scan and associating pixels in the image with rays 
in the volume. This calibration and acquisition is nontrivial; 
the fine resolution of the scans poses practical difficulties. 
Further, we found that this level of detail is not required to 
determine the small number of parameter values we seek. 
Instead, we assume that the fabric is statistically similar 
across different patches. Thus, our approach is to statistically 
match the texture of rendered images with a photograph of 
a different section of the same cloth under uncontrolled but 
known lighting.

We now describe the metrics we use to match the optical 
parameters to the photograph, and then describe our match-
ing algorithm.

6.1. Metrics for matching
Appearance matching is not a straightforward process of 
mapping colors from the photos into the volume, because 
the volume model describes local scattering properties, but 
the appearance is defined by a global volumetric multiple 
scattering process. Our approach is to repeatedly render the 
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Figure 4. (a) Renderings of a cylinder tiled with the satin volume, 
with fixed albedo, and varying lobe width γ and density multiplier d.  
(b) The corresponding standard deviation of pixel values for the 
satin sample: sharper lobes provide shinier appearance and result in 
greater standard deviation. The role of d is more complicated.
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open source rendering system Mitsuba, which was extended 
to handle the new micro-flake distribution (Section 4). 
All the rendered results are generated using Monte Carlo 
volume path tracing.

Figure 6 shows the resulting models shell-mapped onto 
draped fabric geometry and rendered under environment 
lighting. The corresponding high-resolution renderings are 
available on the project Web site at http://www.cs.cornell.
edu/projects/ctcloth-sg11. Fabrics are usually rendered 
with surface-based models, making them thin 2D sheets 
so that cut edges look artificial; our volumetric model, on 
the other hand, explicitly captures 3D structures and pro-
vides a proper impression of the thickness and weight of the 
fabrics. Furthermore, surface-based models show smooth 
edges at silhouettes while our model is able to produce fuzzy 
silhouettes with rich details, bringing a new level of realism 
to fabric rendering.

The silk satin (charmeuse) has a structure of mainly par-
allel fibers on the surface, resulting in a strong anisotropic 
highlight. In Figure 5(1), the appearance matching pair 
uses a cylindrically curved piece of material, and the match-
ing region was chosen to include a highlight to allow the 
matching process to tune g appropriately. Good results are 
obtained despite the mismatch between the ideal cylinder 
in the rendering and the flatter shape of the real material, 
illustrating that a casual setup suffices. Using the param-
eters obtained from this view, the validation pair shows the 
fabric rotated 90 degrees and draped over the same cylinder. 
At this angle the fabric exhibits almost no highlight; this 
anisotropic appearance is correctly predicted by our model.

The satin is shown in a draped configuration in Figure 6(a). 
No reflectance model such as BTF or other multi-view image 
data is used for these renderings—the orientation information 
in the volume automatically causes the characteristic appear-
ance of this fabric to emerge when the model is rendered.

For gabardine, a wool twill fabric, the variation in texture 
with illumination direction is an important appearance char-
acteristic. In Figure 5(2), the appearance matching pair is lit 

density multiplier; our results use two main settings which 
differ by an order of magnitude (see Table 1).

With a fixed density multiplier, we solve for the values of 
albedo (α, estimated separately in red, green, and blue) and lobe 
width (g, a single scalar value) using an iterative algorithm. Note 
that the mean and standard deviation of pixel values change 
monotonically with changes in α and g, respectively. Thus, a 
binary search can be used to significantly improve performance 
as follows: first, an initial guess of g is assumed, and we search 
for the α to match the mean pixel value. Then, fixing α, we per-
form a search for the g to match the standard deviation. These 
iterations are repeated until a match is found. In practice, this 
approach converges quickly, usually in two or three iterations.

Finally, we take another photo under a different setup and 
render a corresponding image as a qualitative validation (see 
Section 7). Figure 5 shows the appearance matching results 
for two different materials.

7. RESULTS
Our results are based on samples of silk satin, velvet, felt, 
and wool gabardine, which were sent to the High-Resolution 
X-ray Computed Tomography Facility at The University 
of Texas at Austin. All fabrics were scanned in an XRadia 
MicroXCT scanner using 10243 volumes with a 5 mm voxel 
size, which observed circular areas of approximately 5 mm 
diameter. Our rendering implementation is based on the 

Material Data size d γ α

Gabardine 992 × 1012 × 181 5000 0.1 (0.892, 0.063, 0.048)

Silk 992 × 1013 × 46 5000 0.01 (0.699, 0.030, 0.080)

Velvet 992 × 1012 × 311 500 0.1 (0.555, 0.040, 0.074)

Felt 992 × 1012 × 485 500 0.125 (0.518, 0.915, 0.365)

Table 1. Fiber scattering model parameter values for our material 
samples: d, the density multiplier; γ, the standard deviation of the 
flake distribution; α, the single scattering albedo

(1a)

(2a) (2b)

(1b) (1c) (1d)

(2c) (2d)

Figure 5. Appearance matching results: (top) silk, (bottom) gabardine. Columns (a) and (c) show photographs of the materials, and (b) and (d) show 
rendered images. The left two columns form the appearance matching pair, in which the blue boxes indicate manually selected regions for 
performing our matching algorithm. The right two columns, the validation pair, validate our matches qualitatively under different configurations.
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self-shadowing attributes are matched nicely and generalize 
well to the second illumination condition. One limitation for 
this material is that it has substantial low- frequency  content 
in its texture, which our small sample area did not capture in 
the CT imaging, leading to a slightly more uniform appear-
ance in our tiled material. Figure 6(d) demonstrates the 
ability of our volumetric appearance model to capture the 
material’s thick, fuzzy appearance.

A 3D, physically based model also allows more meaning-
ful editing than image-based methods. In Figure 7, we extend 
the gabardine model with a spatially varying albedo value. 
The albedo is computed as a function of orientation, so that 
fibers in the warp and weft are assigned different colors. 
With blue warp and white weft a fabric similar to denim is 
produced, though made of wool rather than cotton.

8. CONCLUSION
We have demonstrated a new, multimodal approach to mak-
ing realistic volume models of cloth that capture both the 3D 
structure evident in close-up renderings and the reflectance 
evident in farther-away views. Unlike previous methods for 
capturing cloth appearance using BTFs, our method explic-
itly models the 3D structure of the material and, interestingly, 
is able to capture the directional reflectance of the material 
automatically because of this structure.

Our modeling approach uses CT imaging where it is 
strongest, in measuring 3D structure, and it uses photo-
graphs where they are strongest, in measuring color and 

with a low-frequency environment map. The validation pair 
accurately predicts the texture under a different lighting condi-
tion, which involves a strong luminaire at the top. In the draped 
configuration in Figure 6(b), the volume model captures sub-
tle foreshortening effects and the silhouette appearance, as 
well as the subtle variations in texture across the surface. The 
appearance at the cut edge gives the proper impression of the 
thickness of the fabric (compare to the very thin satin material), 
which is a perennial difficulty with surface models.

Velvet, a material with a cut pile (like a carpet), has a visible 
surface composed of fibers that stick up from the base mate-
rial. It has a very distinctive appearance, with a characteristic 
grazing-angle highlight. The appearance of velvet depends 
on how the fibers are brushed, and our random tile rotation 
method produces randomly brushed velvet. In Figure 6(c), we 
demonstrate how our model reproduces the characteristic 
velvet highlights. Further, the edges and silhouettes convey 
the considerable thickness and weight of this material.

Felt is a nonwoven textile consisting of a disorganized 
layer of matted fibers. The thickness and fuzziness of this 
material are important appearance attributes that are gener-
ally difficult to model and render. Since felt does not exhibit 
an overall specular highlight, we used a flat patch for appear-
ance matching; because of limited depth of field, we limited 
the matching region to a thin rectangle where the photo-
graph is in good focus. The illumination conditions for the 
appearance matching and the validation are the same as 
those for the gabardine. The color and the contrast due to 

(a)

(c)

(b)

(d)

Figure 6. Fabrics in draped configurations with our volumetric appearance model: (a) silk satin, (b) gabardine, (c) velvet, and (d) felt.
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problems will decrease as CT scanners improve in resolu-
tion and dynamic range. CT is very well suited to textiles, 
and it remains to be seen what other materials it performs 
well for, and how other volume imaging methods work in 
this technique. Further, materials with differently col-
ored yarns cannot be currently captured by our method.

There are many areas of future work. This work was 
done using extremely small samples, and with larger sam-
ples, which should be possible as CT technology improves 
and becomes cheaper, better texture could be produced. 
To extend the range of materials that can be handled, 
new parameter estimation methods are needed that can 
identify and fit multiple materials within a single volume. 
To improve accuracy, more photographs under varying 
conditions can be used, allowing more parameters (e.g., 
more complex phase functions) to be fit. Ultimately, this 
method can be extended to work for a wide range of types 
of materials whose appearance is difficult to capture using 
surface models. 

texture. By matching texture statistics we merge these 
two sources of information, resulting in a volume model 
that can produce both close-up views with rich detail of 
fuzz and fiber structure and the characteristic highlights 
of these materials that emerge naturally from rendering 
the measured structure. No reflectance measurements 
are made, and only a few parameters are adjusted in the 
optical model. The appearance of the cloth is created by 
a simple anisotropic phase function model together with 
the occlusion and orientation information extracted from 
the volume. This paper shows that since geometric struc-
ture is what creates the complex appearance of textiles, 
once we acquire the structure, we are most of the way to 
modeling the appearance.

Aside from its implications regarding how material 
appearance can be modeled from structure, this is also 
quite a practical method for appearance modeling. All 
that is required to model a material is a CT scan, which 
can be obtained at reasonable cost from a number of facil-
ities (or in the future from the rapidly improving technol-
ogy of desktop CT scanning) and a few photographs under 
known illumination, which takes only a few minutes with 
a camera and a mirror sphere. In addition, it is possible to 
CT scan a few samples with elementary weave structures 
and assemble the resulting volumes to form fabrics with 
many different designs,19 further reducing per-design 
cost. The resulting models are volumetric in nature, and 
physically based, which makes them easier to edit than 
image-based data. It is easy to adjust color, glossiness, 
opacity, and material thickness by scaling parameters of 
the volume geometry; and a range of more fundamental 
changes to the material’s structure can be made by editing 
the volume data.

This paper has demonstrated the usefulness of the 
CT modeling approach for textiles, but the approach 
does have some limitations. Particularly, it requires that 
changes in optical properties correlate with changes in 
density, and this requirement could limit the kinds of 
materials that can be captured using this imaging modal-
ity. Further, the scanner can only image small samples, 
less than a centimeter across, at the resolution needed 
to produce clear fiber orientation maps. Thick materi-
als that do not fit fully in the volume (e.g., materials with 
very long flyaway fibers) cannot be handled well. Some 
unusual materials, such as metallic fibers, may be prob-
lematic for CT because of limited dynamic range. Also, 
texture content at larger scales will be missed. These 

 1. Adabala, N., Magnenat-Thalmann, N., 
Fei, G. Visualization of woven cloth. 
In 14th Eurographics Workshop on 
Rendering (2003), 180–185.

 2. Ashikhmin, M., Premoze, S., Shirley, 
P.S. A microfacet-based BRDF 
generator. In Proceedings of ACM 
SIGGRAPH 2000 (2000), 65–74.

 3. Chen, Y., an Hua Zhong, S.L., Xu, Y.Q., 
Guo, B., Shum, H.Y. Realistic rendering 
and animation of knitwear. IEEE 
Trans. Visual. Comput. Graph. 9, 1 
(2003), 43–55.

 4. Dana, K.J., van Ginneken, B., Nayar, S.K., 
Koenderink, J.J. Reflectance and 
texture of real-world surfaces. ACM 
Trans. Graph. 18, 1 (1999), 1–34.

 5. Furukawa, R., Kawasaki, H., 
Ikeuchi, K., Sakauchi, M. Appearance 
based object modeling using texture 
database: Acquisition, compression 
and rendering. In Eurographics 
Workshop on Rendering (2002), 
257–266.

 6. Irawan, P., Marschner, S. Specular 
reflection from woven cloth. ACM 
Trans. Graph. 31, 1 (2012), 11:1–11:20.

 7. Jakob, W., Arbree, A., Moon, J.T., 
Bala, K., Marschner, S. A radiative 
transfer framework for rendering 
materials with anisotropic structure. 
ACM Trans. Graph. 29, 4 (2010), 
53:1–53:13.

 8. Kajiya, J.T., Kay, T.L. Rendering fur 
with three dimensional textures. 
SIGGRAPH Comput. Graph. 23, 3 
(1989), 271–280.

 9. Kawabata, S., Niwa, M., Kawai, H. 
The finite deformation theory of plain 
weave fabrics. Part I: The biaxial 
deformation theory. J. Textile Instit. 
64, 1 (1973), 21–46.

10. Lomov, S., Parnas, R., Ghosh, S.B., 
Verpoest, I., Nakai, A. Experimental 
and theoretical characterization of the 

geometry of two-dimensional braided 
fabrics. Textile Res. J. 72, 8 (2002), 
706–712.

11. Magda, S., Kriegman, D. 
Reconstruction of volumetric surface 
textures for real-time rendering. 
In Proceedings of the Eurographics 
Symposium on Rendering (EGSR) 
(2006), 19–29.

12. Perlin, K., Hoffert, E.M. Hypertexture. 
SIGGRAPH Comput. Graph. 23, 3 
(1989), 253–262.

13. Pierce, F.T. The geometry of cloth 
structure. J. Textile Instit. 28, 3 
(1937), 45–96.

14. Porumbescu, S., Budge, B., Feng, L., 
Joy, K. Shell maps. ACM Trans. Graph. 
24, 3 (2005), 626–633.

15. Shinohara, T., Takayama, J., 
Ohyama, S., Kobayashi, A. Extraction 
of yarn positional information from 
a three-dimensional CT image of 
textile fabric using yarn tracing with a 
filament model for structure analysis. 
Textile Res. J. 80, 7 (2010), 623–630.

16. Thibault, X., Bloch, J. Structural 
analysis by X-ray microtomography of 
a strained nonwoven papermaker felt. 
Textile Res. J. 72, 6 (2002), 480–485.

17. Westin, S.H., Arvo, J.R., Torrance, K.E. 
Predicting reflectance functions 
from complex surfaces. SIGGRAPH 
Comput. Graph. 26, 2 (1992), 
255–264.

18. Xu, Y.Q., Chen, Y., Lin, S., Zhong,  H., 
Wu, E., Guo, B., Shum, H.Y. 
Photorealistic rendering of knitwear 
using the Lumislice. In Proceedings 
of ACM SIGGRAPH 2001 (2001), 
391–398.

19. Zhao, S., Jakob, W., Marschner, S., 
Bala, K. Structure-aware synthesis for 
predictive woven fabric appearance. 
ACM Trans. Graph. 31, 4 (2012), 
75:1–75:10.

Shuang Zhao, Wenzel Jakob, Steve 
Marschner, and Kavita Bala ({szhao, 
wenzel, srm, kb}@cs.cornell.edu), Cornell 
University, Ithaca, NY.

References

© 2014 ACM 0001-0782/14/11 $15.00

Figure 7. Renderings obtained by editing the volumetric 
representation: the gabardine sample is rendered with a blue hue 
(left); we then detect weft fibers based on their orientation and color 
them white, which produces a material resembling denim (right).


