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In this paper, we propose techniques for modeling and rendering of heterogeneous translucent ma-

terials that enable acquisition from measured samples, interactive editing of material attributes,

and real-time rendering. The materials are assumed to be optically dense such that multiple

scattering can be approximated by a diffusion process described by the diffusion equation. For

modeling heterogeneous materials, we present the inverse diffusion algorithm for acquiring mate-

rial properties from appearance measurements. This modeling algorithm incorporates a regularizer

to handle the ill-conditioning of the inverse problem, an adjoint method to dramatically reduce the

computational cost, and a hierarchical GPU implementation for further speedup. To render an

object with known material properties, we present the polygrid diffusion algorithm, which solves

the diffusion equation with a boundary condition defined by the given illumination environment.

This rendering technique is based on representation of an object by a polygrid, a grid with regular

connectivity and an irregular shape, which facilitates solution of the diffusion equation in arbi-

trary volumes. Because of the regular connectivity, our rendering algorithm can be implemented

on the GPU for real-time performance. We demonstrate our techniques by capturing materials

from physical samples and performing real-time rendering and editing with these materials.

Categories and Subject Descriptors: I.3.0 [Computer Graphics]: Methodology and Techniques

General Terms: Algorithms

Additional Key Words and Phrases: appearance modeling and rendering, subsurface scattering,

diffusion approximation
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(a) (b) (c) (d)

Fig. 1. Synthesis of a bunny with marble material. (a) Physical sample. (b) Bunny rendered with the acquired material model. (c) After interactive

editing to add patterns. (d) After placing a pattern at a different depth.

1. INTRODUCTION

Many materials in the real world exhibit a complex appearance that arises from subsurface scattering of light. For

heterogeneous translucent objects, the light transport within the material volume is determined by its geometry, the

optical properties of its constituent elements, and the spatial distribution of these elements in the volume. Because of

the complex effects of these various factors on subsurface scattering, models of these materials have been challenging

to acquire from real objects and to render in real time. Furthermore, computational costs and/or modeling deficiencies

have made interactive editing of material properties a difficult problem.

One approach for generating subsurface scattering effects is to acquire and utilize a bidirectional scattering surface

reflectance distribution function (BSSRDF) [Nicodemus et al. 1977] that describes the subsurface transfer of light

between two surface points. Various methods have been presented for recovering the BSSRDF of a translucent object

from images captured under sampled lighting conditions and viewpoints [Goesele et al. 2004; Tong et al. 2005; Peers

et al. 2006]. However, in this surface-based approach, physical material properties cannot be intuitively edited through

modifications of 4D appearance data, which itself can be troublesome to manipulate. Moreover, rendering of surface

appearance involves an integration of BSSRDF contributions from all points on the surface. Such global operations

cannot be effectively implemented on the GPU without precomputation from a fixed BSSRDF.

Another approach is to construct an explicit model of scattering coefficients throughout the material volume, and

then simulate subsurface scattering based on physical principles. Although a material representation can be directly

modified in such a volume-based approach, scattering within heterogeneous translucent materials cannot be rapidly

computed using previous techniques [Stam 1995; Chen et al. 2004; Li et al. 2005], thus limiting the ability to edit the

material in practice. Besides the need for offline rendering, these methods do not provide a way to reliably acquire

volumetric material models from real world samples.

In this paper, we propose techniques for modeling and rendering of heterogeneous translucent materials that enable

acquisition from measured samples, interactive editing of material attributes, and real-time rendering. The material

is represented as a discretized volume in which spatially-variant absorption and diffusion coefficients are associated

with each volume element. We focus on multiple scattering and assume the material to be optically dense such that

subsurface scattering becomes nearly isotropic and can be well approximated by a diffusion process [Ishimaru 1978].

This is called the diffusion approximation. In medical imaging, the diffusion approximation has been widely used to

model the multiple scattering in heterogeneous human tissues [Schweiger et al. 2003; Boas et al. 2001]. For rendering

participating media, Stam [1995] used the diffusion approximation to model the multiple scattering in heterogeneous

clouds, where the absorption and diffusion coefficients can vary in the volume. For subsurface scattering, an analytic

dipole model derived from the diffusion approximation was used by Jensen et al. [2001] for multiple scattering in

homogeneous materials. In this paper, we also address subsurface scattering, but deal with the general case of multiple
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scattering in heterogeneous materials with the diffusion approximation.

To model heterogeneous materials, we present the inverse diffusion algorithm for recovering a volumetric material

model from appearance measurements by solving an inverse diffusion problem. For a given distribution of spatially-

variant absorption and diffusion coefficents, the corresponding diffusion process that generates the material appearance

can be expressed as a partial differential equation, defined over the volumetric elements, with the boundary condition

given by the lighting environment. Acquiring a volumetric model from a material sample involves an inverse diffusion

problem in which we search for a distribution of spatially-variant absorption and diffusion coefficents such that the

corresponding diffusion process generates the material appearance that is most consistent with the measured surface

appearance in captured images. Since the images record an actual material sample, a solution to the inverse diffusion

problem certainly exists. This inverse problem, however, is well-known to be ill-posed, since a range of different

volumetric models may have indistinguishable surface appearances [Arridge and Lionheart 1998]. Consequently, the

diffusion equations and image measurements define a group of solutions. Since these solutions correspond to the same

visual appearance, any solution from this group provides a valid volumetric appearance model of the given material.

Finding a solution to the inverse diffusion problem is challenging due to the nature of the inverse problem and the

large number of variables involved. The inverse diffusion problem is usually solved with an iterative optimization

procedure, in which each iteration requires an expensive gradient evaluation. For a volume with elements on an n3

grid, this gradient evaluation involves n3 ×M light diffusion computations, where M is the number of image measure-

ments. The inverse diffusion problem is also ill-conditioned numerically, which presents convergence problems for

the iterative solver. To ensure stable convergence, we incorporate a regularizer on the diffusion coefficients and use an

effective initialization that assigns uniform diffusion coefficents among the voxels. We additionally employ an adjoint

method [Lions 1971], widely used in optimal control for gradient computation, to dramatically reduce the cost of the

gradient evaluation down to 2M light diffusion computations. With these schemes and a GPU implementation of the

diffusion computation, we show that finding a solution of the inverse diffusion problem becomes feasible for volumes

of moderate size.

For rendering a volumetric model with known material properties, we present the polygrid diffusion algorithm,

which solves a diffusion equation whose boundary condition is defined by the given illumination conditions. That

multiple scattering may be modeled as a diffusion process was first observed by Stam [1995] in the context of partici-

pating media rendering. He solved the diffusion equation on a cubic volume using a regular grid and a finite difference

method (FDM). Our rendering algorithm solves the diffusion equation on 3D volumes of arbitrary shape using a poly-

grid and an FDM. Our algorithm is centered around the polygrid representation, which facilitates the solution of the

light diffusion equation in arbitrary volumes. A polygrid is a grid with regular connectivity and an irregular shape

for a close geometric fit without fine sampling. The regular connectivity allows us to develop a hierarchical GPU

implementation of our rendering algorithm for real-time performance. We describe how to construct a polygrid on an

arbitrary 3D object, and present a technique for evaluating diffusion equations defined among the irregular intervals of

polygrid nodes.

With the proposed technique, models of various materials can be readily captured and interactively transformed

with adjustments of scattering properties as shown in Figure 1. This system for flexible use of real appearance data

provides designers a valuable tool for creating realistic objects with the visual features of heterogeneous translucent

materials. Indeed, this is the only method to date that supports real-time rendering and editing of such volumes.

2. RELATED WORK

Subsurface scattering of light within a material has typically been represented with models of radiative light transfer.

Hanrahan and Krueger [1993] proposed a model based on one-dimensional linear transport theory for single scattering

in layered materials. Jensen et al. [2001] presented a practical model for subsurface scattering in homogeneous mate-

rials based on an analytic dipole diffusion approximation. In [Donner and Jensen 2005], a shading model formulated

from multipole theory was proposed for light diffusion in multi-layered translucent materials. We utilize the diffu-
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sion equation in our work, which allows for more general modeling of multiple scattering effects in heterogeneous

translucent materials.

In the following, we review related methods for acquiring subsurface scattering models, and rendering and editing

of materials.

2.1 Acquisition of Subsurface Scattering Models

Subsurface scattering models of heterogeneous materials may be acquired directly from image appearance. Acquisi-

tion methods have been presented for human faces [Debevec et al. 2000], object-based models [Goesele et al. 2004],

material-based models for volumes with an even distribution of heterogeneous elements [Tong et al. 2005], and mate-

rial models for general heterogeneous volumes [Peers et al. 2006]. These surface-based representations are specific to

the measured object or material. Although the appearance of a material could potentially be modified in these models,

physical material properties cannot be edited in a meaningful way.

Models of subsurface scattering may also be acquired through estimation of scattering parameters from a mate-

rial sample. Parameter estimation, however, is often confounded by multiple scattering, whose appearance arises in

a complex manner from a material’s scattering properties. For homogeneous materials, multiple scattering can be

approximated with analytic models [Jensen et al. 2001; Narasimhan and Nayar 2003], which have greatly facilitated

estimation of scattering parameters. In [Narasimhan et al. 2006], the effects of multiple scattering are avoided by

diluting participating media to low concentrations, such that multiple scattering becomes negligible and scattering pa-

rameters can be solved from only single scattering. For heterogeneous, optically dense materials, multiple scattering

cannot be addressed with such simplifications. Our method is the first to acquire volumetric models of heterogeneous

materials.

Recently in medical imaging, special measurement devices based on time- and frequency-modulated near in-

frared lighting have been proposed for estimating material properties in body tissues with multiple scattering effects

[Schweiger et al. 2003; Boas et al. 2001]. This approach is showing promise in its early stage of development [Gibson

et al. 2005], but has limited application in computer graphics. Although its use of infrared lighting may be well-suited

for tissue penetration and categorization of volume elements into particular tissue types, general scattering properties

over the full visible spectrum need to be acquired for computer graphics purposes. Moreover, existing reconstruction

algorithms are computationally expensive, and are practical only for coarse 3D volumes (e.g., 32× 32× 10 in [Boas

et al. 2001]) or for 2D slices. Unlike in medical imaging, computer graphics applications need not recover the actual

scattering coefficients in a material volume, but instead need only to obtain a material model whose appearance is

consistent with image measurements. This model must be acquired over the full visible spectrum and with detailed

material variations for high visual fidelity. In our work, present a technique for obtaining such volumetric material

models using conventional photographs. With our efficient inverse diffusion algorithm, we can successfully acquire

3D material models with a high level of detail.

2.2 Material Rendering and Editing

For rendering of BSSRDF models of subsurface scattering, several hierarchical schemes [Jensen and Buhler 2002;

Carr et al. 2003] have been proposed to facilitate integration of BSSRDF contributions from all points on the surface.

Since these hierarchical data structures need to be precomputed before rendering, they cannot be used in material

editing. [Mertens et al. 2003] proposed a hierarchical scheme that supports real-time updates, but since this method

is based on the dipole diffusion model, it can be used only for rendering homogeneous materials. In [Lensch et al.

2003], local subsurface scattering is computed by a local image filter, while the global scattering is determined from

vertex-vertex transport. Although this method can provide interactive rendering speed, precomputation of the local

filter and global transport makes this approach unsuitable for material editing.

Subsurface scattering has been simulated for volumetric material models using Monte Carlo methods [Dorsey et al.

1999; Pharr and Hanrahan 2000] and photon tracing [Jensen and Christensen 1998], but at a considerable expense in

computation. Real-time rendering can be achieved through precomputation of light transport [Hao and Varshney 2004;
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Fig. 2. Overview. (a) Rendering with forward diffusion, from the volumetric material properties (κ(x) and µ(x)) and illumination setting (Li) to the

outgoing radiance (Lo). (b) Model acquisition with inverse diffusion, from a set of illumination conditions (Li) and measured outgoing radiances

(Lo) to the volumetric material properties (κ(x) and µ(x)).

Wang et al. 2005]. However, light transport quantities that have been precomputed with respect to a given volumetric

model are no longer valid after material editing.

For radiance transfer modeled as a diffusion process, the set of PDE equations may be numerically solved to deter-

mine material appearance. Multi-grid schemes and simplified volume representations have been employed to facilitate

rendering of participating media in [Stam 1995]. Haber et al. [2005] used embedded boundary discretization to solve

for light diffusion in object volumes of arbitrary shape, though not in real time. A finite element method (FEM) could

also be used in computing light diffusion within an arbitrary object. However, FEMs require decomposition of the

object into tetrahedra, whose irregular connectivity makes GPU implementation difficult. In our proposed approach,

real-time evaluation of diffusion is achieved with a polygrid representation of the object volume and an adaptive

hierarchical scheme for diffusion computation that has an efficient implementation on the GPU.

3. OVERVIEW

Figure 2 presents an overview of our approach. We denote the object interior as volume V and the object surface as

A. The outgoing radiance L(xo,ωo) at a surface point xo in direction ωo may be computed by integrating the incoming

radiance L(xi,ωi) from all incident directions ωi and points xi on surface A:

Lo(xo,ωo) =

∫

A

∫

Ω
S(xi,ωi,xo,ωo)Li(xi,ωi)(n ·ωi)dωidA(xi),

where n is the surface normal at xi and S(xi,ωi,xo,ωo) is the BSSRDF. The outgoing radiance can be divided into

single- and multiple-scattering components:

Lo(xo,ωo) = Ls(xo,ωo)+ Lm(xo,ωo).

The single-scattering component Ls(xo,ωo) accounts for light that interacts exactly once with the medium before

exiting the volume, and may be evaluated by integrating the incident radiance along the refracted outgoing ray, as

described in Eq. (6) of [Jensen et al. 2001].

In our method, we focus on multiple scattering Lm(xo,ωo) that consists of light that interacts multiple times within

the object volume, which is the dominant scattering component for optically dense materials. For highly scattering,

non-emissive materials, the multiple scattering can be approximated by a diffusion process described by the following

equation [Ishimaru 1978]:

∇ · (κ(x)∇φ(x))− µ(x)φ(x) = 0, x ∈V, (1)
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with boundary condition defined on the object surface A [Schweiger et al. 1995]:

φ(x)+ 2Cκ(x)
∂φ(x)

∂n
= q(x), x ∈ A, (2)

where φ(x) =
∫

4π Lo(x,ω)dω is the radiant fluence (also known as the scalar irradiance or radiant flux), κ(x) =
1/[3(µ(x)+ σ ′

s(x)] is the diffusion coefficient, µ(x) is the absorption coefficient, and σ ′
s(x) = σs(1− g) is the re-

duced scattering coefficient with g being the mean cosine of the scattering angle. We define C = (1 + Fdr)/(1−Fdr),
where Fdr is the diffuse Fresnel reflectance that is determined by the refraction index η of the material [Jensen et al.

2001]. The diffused incoming light at a surface point x is given by q(x) =
∫

Ω Li(x,ωi)(n ·ωi)Ft(η(x),ωi)dωi, where

Ft(η(x),ωi) is the incoming Fresnel transmission term. Note that this diffusion process well describes light transport

between voxels of different optical properties since the κ and µ used in Eq. (1) and Eq. (2) may vary throughout the

volume.

With the diffusion approximation, the multiple scattering component of the outgoing radiance is approximated by

Lm(xo,ωo) = −
C

π
Ft(η(xo),ωo)κ(xo)

∂φ(xo)

∂n
, (3)

where φ(xo) is computed from Eq. (1) and Eq. (2) [Schweiger et al. 1995; Jensen et al. 2001].

Our work centers on modeling and rendering multiple scattering in a heterogeneous material using the diffusion

approximation. For rendering an object with known µ(x) and κ(x) throughout the object volume V , we solve the

diffusion problem with a given illumination condition q(x) on the object surface A. Once the solution φ(x) is found,

the multiple scattering component of the outgoing radiance can be easily evaluated using Eq. (3). We note that the

diffusion equation assumes scattering to be frequent enough to be considered nearly isotropic and independent of the

phase function.

In acquiring the material properties from measured appearance, we need to compute the absorption coefficients

µ(x) and diffusion coefficients κ(x) based on measured outgoing radiances {Lo,m(x,ωo) | x ∈ A, m = 0,1, . . .M}
from the object surface due to multiple scattering under M different illumination conditions {Li,m(x,ωi) | x ∈ A, m =
0,1, . . .M} on the object surface. For this purpose, we solve the inverse diffusion problem to find κ(x) and µ(x)
such that the corresponding diffusion problem, which is expressed by Eq. (1), Eq. (2), and Eq. (3), produces the

outgoing radiance LR
o,m(x,ωo) that is most consistent to the measured outgoing radiance Lo,m(x,ωo) under the same

illumination conditions Li,m(x,ωi). The inverse diffusion problem is thus formulated as finding the values of κ(x) and

µ(x) throughout the volume that minimize the objective function

M

∑
m=1

∫

A

∫

Ω

(

Lo,m(x,ωo)−LR
o,m(x,ωo)

)2
dA(x)dωo. (4)

To obtain multiple scattering components from image measurements, a cross-polarization approach as described in

[Debevec et al. 2000] may be employed. We instead utilize an image acquisition scheme described in Section 4.1 that

minimizes the presence of single scattering and surface reflections in the image data.

4. INVERSE DIFFUSION ALGORITHM FOR ACQUISITION OF MATERIAL MODEL

To acquire the volumetric material model of a real object, we obtain images of the object under different illumination

conditions and then solve the inverse problem of light diffusion on the multiple scattering components. In solving the

inverse diffusion problem, we search for the volumetric model (µ(x),κ(x)) whose forward diffusion solution is most

consistent with the acquired images. This procedure is described in the following subsections.

4.1 Data Capture

We use a Canon 30D digital camera with a 17-45mm lens to record images of a material sample that is illuminated by

an Optoma DLP projector with a 4500:1 contrast ratio. In our experiments, the material samples are all block-shaped
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Fig. 3. Two experimental setups used for data acquisition. (a) back-lighting setup for thin material samples. (b) front-lighting for thick material

samples.

and represented as a regular grid with n×m× l sample points (n ≥ m ≥ l) on the grid nodes. As shown in Figure 3,

we utilize two setups depending on the thickness of the sample. In both setups, we position the sample so that one of

the n×m faces is perpendicular to the optical axis of the projector. For thin material samples (n,m ≫ l), the camera is

placed facing the sample from the opposite side, such that the sample is imaged with back-lighting. For thick material

samples with little transmission of light through the volume, we position the camera beside the projector as done

in [Peers et al. 2006]. We will refer to the side of the sample facing the camera as the front face.

The camera and projector are calibrated prior to image acquisition. For radiometric calibration of the camera, we

apply the method of [Debevec and Malik 1997]. Geometric calibration of both the camera and projector is done with

the technique in [Zhang 1999], where for the projector we project a chessboard pattern onto different planes. The

white balance of the camera is calibrated with respect to the projector, based on the projection of a white image onto

a Macbeth Color CheckerTM chart with known albedos. The color chart is also used in measuring the black level of

the projector. To avoid interference effects from the projector’s color wheel, we utilize exposure times of at least 1/30

second.

In illuminating the sample, we subdivide the face that receives direct lighting into 4× 4 regions, and separately

project light onto each region while capturing an image sequence of the complete sample with a fixed aperture and

variable exposure times ranging from 1/30 to 8 seconds. Using the method in [Debevec and Malik 1997], we construct

an HDR image from the image sequence for each illumination condition. Vignetting effects from the projector are

minimized by illuminating the sample using only the center of the projector images. This capture process typically

takes about half an hour.

With this capture process, we obtain images of multiple scattering data. In the thin-sample setup, the back-lighting

is assumed to scatter multiple times before exiting from the front face, such that captured images contain only multiple

scattering. In the setup for thick samples, we utilize image data only from surface points that are not directly illumi-

nated by the projector. The appearance of these points is considered to result only from multiple scattering. Since the

projector and camera are aligned perpendicularly to the material sample in both configurations, we can disregard the

Fresnel transmittance effects on the measured multiple scattering, and drop the dependence on ωo in Eq. (4). For all

examples in this paper, we follow [Jensen et al. 2001; Tong et al. 2005] and assume that the refraction index of all

materials η is 1.3. For Eq. (2) and Eq. (3), this value of η is used to derive the constant C = 2.1489.

4.2 Volumetric Model Acquisition

For each captured image and corresponding lighting condition, we map onto each grid node on the front and back

faces its incoming light intensity and measured outgoing radiance. The material model is then acquired by solving for

the scattering parameters (κ and µ) of each node in the volume that would result in image appearances most consistent
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Set initial material properties: ~κ0, ~µ0

Set initial search direction: ~d0 = −~z(κ0,µ0) and ~p0 = ~d0

Repeat following steps until fM < ε

Compute gradient~z(κt ,µt) =
(

d fM(~κ,~µ)
dκ(x) ,

d fM(~κ,~µ)
dµ(x)

)

Set pt = −~z(κt ,µt)

Update search direction ~dt = ~pt +β · ~dt−1, β = max
(

~pT
t (~pt−~pt−1)
~pT

t−1~pt−1
,0
)

Golden section search λ ′ by min
λ ′

[

fM

(

(~κt ,~µt)+λ ′~dt

)]

Update solution (~κt+1,~µt+1) = (~κt ,~µt)+λ ′~dt

Table I. Conjugate gradient based algorithm for minimizing fM .

with the measured data. With the M measured images of the material sample, we thus aim to minimize the following

objective function:

fM(~κ,~µ) =
M

∑
m=1

fm(~κ ,~µ)+ λ ∑
x∈V

‖∇κ(x)‖2,

where fm(~κ,~µ)= ∑x∈A

(

Lo,m(x)−LR
o,m(x)

)2
measures the consistency between the measured outgoing radiance Lo,m(x)

from all front face points x and the outgoing radiance LR
o,m(x) that is computed from the estimated scattering parame-

ters with the illumination condition of image m. Note that in fm we drop the dependence on ωo that is present in Eq. (4)

because of our imaging configuration. The vectors ~κ and ~µ represent the set of diffusion and absorption coefficients

defined over all the grid nodes. Since model acquisition is ill-conditioned with respect to κ , we add a regularization

term ∑x∈V ‖∇κ(x)‖2 to the objective function, weighted by a constant λ set to 1e−5 in our implementation.

To minimize fM , we employ the conjugate gradient algorithm outlined in Table I. From an initialization of ~κ and
~µ , we first compute the gradient of fM with respect to (~κ ,~µ) over the set of measured images. The search direction

is then updated with the Polak-Ribiere method [Press et al. 1992]. Subsequently, we perform a golden section search

to find the optimal step length λ ′ along the search direction. Finally, we update ~κ and ~µ using the computed gradient

~z(κ ,µ) and λ ′. These steps are iterated to update ~κ and ~µ until the objective function falls below a threshold set to

ε = 10−4 ×∑x∈A[Lo,m(x)]2 in our implementation. This optimization is performed separately on the RGB channels.

To initialize the scattering parameters in this optimization, we solve for the volumetric material model under the

assumption that it is homogeneous, i.e., all the grid nodes have the same µ ,κ . Since there exist only two unknowns in

this case, they can be quickly computed using the conjugate gradient procedure with user-specified initial values.

A key step in conjugate gradient optimization is the computation of the fM gradient relative to the unknown κ and µ
values at each grid node. Since the diffusion equation has no analytic solution, we compute the gradients numerically.

A straightforward approach for gradient computation is to perturb each of the variables and obtain the resultant change

in objective function value. One forward diffusion simulation would then be necessary to compute each gradient.

Although this method is feasible for a system with few parameters (e.g., a homogeneous volume), it is impractical

for arbitrary heterogeneous volumes which have a large number of unknowns. Specifically, model acquisition for an

n×m× l grid with M measurements would require 2×n×m× l×M forward diffusion simulations for each iteration,

clearly a prohibitive expense.

4.3 Adjoint Method For Gradient Computation

To significantly expedite gradient computation, we take advantage of the adjoint method [Giles and Pierce 1999], a

technique that has been widely used in optimal control [Lions 1971]. We describe here how to directly use the adjoint

method in our application, and give derivation details in Appendix A.
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To use the adjoint method in our solution, we first define the adjoint equation of the original diffusion equation as

∇ · (κ(x)∇ϕ(x))− µ(x)ϕ(x) = 0, x ∈V, (5)

with boundary condition defined on the surface A:

ϕ(x)+ 2Cκ(x)
∂ϕ(x)

∂n
=

2C

π
(Lo,m(x)−LR

o,m(x)), x ∈ A, (6)

where (Lo,m(x)−LR
o,m(x)) is the difference between the measured outgoing radiance Lo,m(x) from all frontal sample

points x and the outgoing radiance LR
o,m(x) that is computed from the diffusion equation with the illumination condition

qm of image m. Given ϕ , the gradient of fM with respect to κ and µ at each grid point is computed by

d fM(~κ ,~µ)
/

dκ(x) =
M

∑
m=1

∇ϕm(x) ·∇φm(x)−2λ ∆κ(x),

d fM(~κ ,~µ)
/

dµ(x) =
M

∑
m=1

ϕm(x)φm(x),

(7)

where φm(x) is determined from the diffusion equation with the illumination condition qm of image m.

In contrast to the original diffusion equation, the adjoint method utilizes “virtual” illumination to define the boundary

condition. This virtual illumination (2C/π)(Lo,m(x)−LR
o,m(x)), which may be negative, and φ are computed from the

diffusion equation using the actual illumination condition. With the virtual illumination, we solve the adjoint equation

for ϕ , and then determine the gradient of fM relative to κ and µ using Eq. (7). Using the adjoint method, only 2M

forward diffusion simulations are needed for gradient computation. Because of its computational efficiency, the adjoint

method has also been used in [McNamara et al. 2004] for gradient computation in fluid control.

4.4 GPU-based Diffusion Computation

In model acquisition, forward diffusion simulations are used not only in gradient computation, but also for evaluating

the objective function in the golden section search. To solve the diffusion equation on a 3D regular grid, we discretize

the diffusion equation as a set of linear equations over the grid nodes using the FDM scheme in [Stam 1995]:

6

∑
j=1

1

h2
κ(v j)φ(v j)−

6

h2
κ(vi)φ(vi)−u(vi)φ(vi) = 0,

φ(v′i)+ 2Cκ(v′i)
φ(v′i)−φ(v′j)

h
= q(v′i),

(8)

where v j denotes one of six nodes directly connected to interior node vi. h represents the distance between two

neighboring nodes. q(v′i) denotes the incoming radiance at boundary node v′i. And v′j is the closest interior node to v′i
along the inward normal direction.

This linear system can be numerically solved using the relaxation scheme described in [Stam 1995], which involves

considerable computation and is the bottleneck in model acquisition. For efficient processing, we present a GPU-based

multiresolution scheme that simulates forward diffusion in the pixel shader on grid values of κ , µ , and q packed into

separate 2D textures. This GPU-based method can be regarded as a regular-grid version of the rendering algorithm in

Section 5, where we provide further details.

In solving the diffusion equation on the GPU, we upload all the relevant data from main memory to texture memory,

and then output the radiant fluence results from the frame buffer back to main memory. The remaining optimization

computations are all executed on the CPU. Despite some overhead for data transfer, an appreciable overall reduction

in computation costs is obtained through GPU acceleration.
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5. POLYGRID DIFFUSION ALGORITHM FOR RENDERING AND EDITING

After acquiring a material model from a real sample, a volume of arbitrary shape can be formed with this material

using the mapping techniques described in [Chen et al. 2004; Porumbescu et al. 2005]. These approaches map the

material properties into a shell layer at the object surface, and construct the inner core volume by synthesizing a user-

specified material texture or interpolating from the inner boundary of the shell layer using mean value coordinates [Ju

et al. 2005].

With a given lighting condition and the material properties defined throughout the object volume, the subsurface

scattering effects from the object can be rendered in a three-pass process. In the first pass, we compute the incoming

radiance on the object surface, based on shadow map visibility for directional or point lighting, or from precomputed

radiance transfer techniques [Sloan et al. 2002; Ng et al. 2003] for environment lighting. In the second pass, we render

the multiple scattering effects by simulating light diffusion inside the object volume with the incident radiance on the

surface as the boundary condition. Then, a single scattering term and surface specular reflections from the incoming

illumination is computed. The final rendering result is obtained by adding all of these components together.

To efficiently solve for light diffusion on the GPU, we extend the FDM scheme on regular volumetric grids to handle

a polygrid defined in the object volume. A polygrid is a grid with regular 6-connections among evenly distributed

nodes inside the volume, and with boundary nodes that are aligned to the object surface and are each connected to one

interior node along the inward normal direction. With the polygrid representation of the object volume, we discretize

the light diffusion equation and its boundary condition into a system of linear equations:

6

∑
j=1

w jiκ(v j)φ(v j)−

(

6

∑
j=1

w ji

)

κ(vi)φ(vi)−u(vi)φ(vi) = 0,

φ(v′i)+ 2Cκ(v′i)
φ(v′i)−φ(v′j)

d ji

= q(v′i),

(9)

where v j denotes one of six nodes directly connected to interior node vi with a weight w ji for the Laplacian operator,

as described in Appendix B. d ji represents the distance between a boundary node v′i and the closest interior node v′j
along the inward normal direction, and q(v′i) denotes the incoming radiance at surface node v′i.

In the remainder of this section, we describe how to construct the polygrid of an object volume and how to solve

the diffusion equation on the GPU. We also present a hierarchical scheme for accelerating GPU evaluation of light

diffusion on a polygrid.

5.1 Polygrid Construction

The steps in constructing a polygrid model of the object volume are shown in Figure 4. We first manually assemble

a polycube [Tarini et al. 2004] of similar topology that approximates the volume. Within the cubes, we form regular

grids of equal resolution, and connect the grids between adjacent cubes. The interior nodes directly linked to boundary

nodes on the edges or corners of the cube have connectivity to multiple boundary nodes, which may lead to artifacts in

the light diffusion computation. We address this problem by removing certain nodes and adjusting the links to obtain

single connections to boundary nodes. As shown in Figure 4 (g) and (h), we examine axis-aligned 2D slices of the grid

and utilize different grid adjustment schemes depending on the grid convexity in each slice. This procedure yields a

polygrid defined in the polycube.

We then map this polygrid to the object volume. To find a mapping, we first determine a projection of the polycube

surface onto the object surface, using a PolyCube-Map [Tarini et al. 2004] or other mesh cross-parameterization

method (e.g., [Kraevoy and Sheffer 2004; Schreiner et al. 2004]). The boundary nodes of the polygrid are then

mapped to the object surface and adjusted to obtain an even distribution [Turk 1992]. After that, the interior nodes

directly connected to the boundary nodes are placed within the object volume at a distance d along the inward normal

directions, where d is one-tenth the average distance between connected boundary nodes on the object surface. The
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(a) (b) (c)

(f)(e)(d)

(g) (h)

Object 

Boundary

Polycube Boundary Node

Interior 

Node

Removed 

Node

Fig. 4. A 2D illustration of polygrid construction. (a) Creating a polycube that approximates the object. (b) Generating a grid in the polycube. (c)

Modifying the corner nodes. (d) Projecting boundary nodes to the object surface. (e) Mapping nodes connected to boundary nodes to the object

volume. (f) Computing the final polygrid in the object volume. (g) and (h) are two schemes used to modify irregular corner nodes on 2D slices of

the grid.

Fig. 5. The polygrid constructed in a 3D model.

close placement of these nodes to the boundary nodes is intended for accurate handling of the boundary condition. The

remaining interior nodes are then positioned within the volume in a manner that minimizes the variance of distances

between connected nodes: min∑i∈interior Var({‖vi − v j‖ : j ⊲⊳ i}), where Var(·) denotes the variance of a set of scalars,

vi is the 3D position of node i, and j ⊲⊳ i indicates that node j is connected to node i. Figure 4 illustrates this construction

procedure in 2D. In principle, a conformal mapping [Gu and Yau 2003] should be used to preserve the orthogonality of

the original grid connections and minimize distortion (see Appendix B). However, this remains a challenging problem

for 3D volumes, so in practice we utilize the presented variance minimization scheme which we have found to yield

acceptable solutions.

This construction scheme maintains the regular connectivity of nodes and produces locally uniform distributions

of interior grid nodes in the object volume. As exemplified in Figure 5, all the interior grid nodes of the polygrid

are 6-connected, and each boundary node is connected to exactly one interior node. The connectivity between the

boundary grid nodes is not used in rendering and can be ignored in the diffusion computation.

5.2 GPU-based Polygrid Diffusion Computation

With the constructed polygrid, we build a system of linear equations for light diffusion. The material properties for

each grid node are sampled from the object volume, and the incoming illumination is computed for boundary nodes.
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Packed 2D TexturePolygrid

z

y
x

Fig. 6. Flattening a polygrid into a packed 2D texture.

Texture Blocks

A Slice in Polygrid

(a) (b)

Texture Blocks

Fig. 7. Geometric primitives for nodes with different texture access patterns. (a) Three types of nodes, rendered using different geometric primitives.

Each region is rendered by one primitive. (b) Geometric primitives for some texture blocks with removed nodes.

Although a general purpose GPU-based linear system solver could be used for computation [Krüger and Westermann

2003; Bolz et al. 2003], we have designed a more efficient GPU implementation that is specific to diffusion computa-

tion on a polygrid.

In this method, the polygrid material parameters are packed into a set of 2D textures for computation on the GPU.

For efficient rendering, the textures must be packed such that the connected neighbors of each node are easily acces-

sible. Towards this end, we organize each texture according to the positions of the polygrid nodes within the original

polycube. We traverse the cubes in the polycube in scanline order, and flatten the grid of each cube as shown in Fig-

ure 6. The grid in each cube is divided into 2D x-y slices, which are each treated as a texture block and ordered in the

texture by increasing z value. In packing the texture, we retain the empty positions of grid nodes that were previously

removed, so that the cubes have slices of equal size. Two 2D textures Tκ and Tµ are created for the corresponding

scattering parameters, and for the iterative computation we maintain two swap radiance buffers IA and IB that are

organized in the same manner as Tκ and Tµ . In addition, we precompute the six weights for the Laplacian operator,

then similarly pack this data into two textures Tw1 and Tw2. The incoming radiance is also packed into a 2D texture Tl

according to an access order that will be described later.

After texture packing, we solve the diffusion equations on the polygrid using the relaxation scheme in [Stam 1995].

Starting from the initial radiant fluence values φ0, we iteratively update the radiant fluence values in the two radiance

buffers until convergence. With the radiant fluence at each node corresponding to one pixel in the radiance buffer, this

computation can be executed in the pixel shader with parameters accessed from the textures. To reduce texture fetches

in the pixel shader, we store φ ′ = κφ in the radiance buffer. In each step, the radiant fluence values are updated as
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Fig. 8. A 2D illustration of the adaptive hierarchical technique used in diffusion computation. In this scheme, we fix the values of the blue nodes in

the middle level after initialization from the coarsest level. The blue and green nodes at the finest resolution are also fixed after initialization. Nodes

in the gray region are not used in the diffusion computation and are removed from textures.

follows:

φ ′
n+1(vi) =

∑
1≤ j≤6

w ji(vi)φ
′
n(v j)

µ(vi)/κ(vi)+ ∑
1≤ j≤6

w ji(vi)
,

φ ′
n+1(v

′
i) =

q(v′i)κ(v′i)κ(v′j)d + 2Cκ2(v′i)φ
′
n(v

′
j)

κ(v′j)d + 2Cκ(v′i)κ(v′j)
,

where right-hand-side operators of the form f (·) involve a texture access, and the radiance buffer for φ ′
n is used as the

texture while the other radiance buffer is used as the rendering target for φ ′
n+1.

As shown in Figure 7, there exist three types of nodes/pixels in the radiance buffer, each with different texture

access patterns for reaching connected nodes. We render each type of node using a different geometric primitive,

represented by colored regions in the figure. For a (blue) node that lies in the interior of a texture block, four of

its connected neighbors in the polygrid are also adjacent neighbors in the 2D texture, while the other two neighbors

can be found with the same offset value in other texture blocks. We update the values of these nodes by rendering a

quadrilateral with the texture offsets of the two non-adjacent neighbors as vertex attributes. After rasterization, this

offset information can be interpolated from the vertices to each pixel in the quad. In a similar manner, the (green)

nodes on each texture block edge are rendered with a line, where three neighbors are adjacent in the texture, and the

texture offsets of the other three are stored as line vertex attributes. The (red) nodes of each texture block corner

are rendered with points, with the texture offsets of all six neighbors stored as vertex attributes. Slices that contain

removed nodes can also be rendered using these three primitives. All of these geometric primitives and their vertex

attributes can be precomputed and loaded into graphics memory before rendering. Since the surface boundary nodes

and the interior nodes are processed differently, we render their corresponding geometric primitives in two separate

passes with different pixel shaders. After completing this computation, we calculate the output radiance on the surface

by updating the boundary nodes in the radiance buffer as L(v′i) = Ft(xo,ωo)[φ
′(vi)− q(vi)κ(vi)]/[2πκ(vi)]. These

boundary node values are then used as a texture for surface vertices in the final pass.

With this packing and rendering scheme, the radiant fluence values are updated with ten texture fetches for interior

nodes and five texture fetches for surface nodes. Compared to [Krüger and Westermann 2003; Bolz et al. 2003], our

scheme avoids extra texture storage for node connectivity information and dependent texture accesses in rendering. We

acknowledge that alternative schemes for packing and rendering are possible and may be better, but we nevertheless

have obtained good performance with this method.

5.3 Hierarchical Acceleration

For greater efficiency in computing light diffusion, we employ a hierarchical scheme to accelerate rendering with the

polygrid. In this scheme, we first construct a multiresolution polygrid in the object volume. Starting from the original
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Fig. 9. User interface for material editing.

polygrid, the positions and material properties of nodes at successively coarser levels are determined by averaging

the positions and material properties of its eight children at the next finer level. For nodes whose children contain

removed nodes, we normalize the result by the number of existing children. Before rendering, we pack the material

properties at each resolution and generate texture pyramids for Tκ , Tµ , Tw1 and Tw2. Pyramids need not be generated

for the radiance buffers IA and IB, which can simply be reused for computation at each level. During rendering, we

first solve the diffusion equations at the coarsest grid level, and then use the computed radiant fluence at each node as

initializations for its children nodes at the next finer level. This process iterates until a solution at the original polygrid

resolution is obtained.

The hierarchical algorithm can be accelerated by employing an adaptive scheme in which light diffusion is computed

to different resolutions at different depths in the volume. Since material variations deeper inside the object volume

have more subtle effects on surface appearance, it is sufficient to approximate light diffusion at deeper nodes with

coarser-resolution solutions. As shown in Figure 8, after we obtain the solution at a coarse resolution and copy it

to a finer resolution, the radiant fluence values at nodes below a certain depth are fixed, while the nodes closer to

the boundary are updated. In our implementation of this adaptive scheme, the computed resolution at different depth

levels is given by the user. Texture blocks whose nodes are not used in computation at a given level are removed to

save on texture storage.

In our current implementation, we do not use the V-cycle multi-grid algorithm to speed up light diffusion computa-

tion, since the multigrid algorithm cannot easily be incorporated into our adaptive scheme. Also, V-cycle multi-grid

algorithms require extra texture storage for residual and temporary radiant fluence values in each level. If all grid

nodes are used in light diffusion, our hierarchical solution algorithm can be regarded as a simplified N-cycle multi-

grid scheme without the V-cycles for each resolution [Press et al. 1992].

A favorable property of the light diffusion algorithm is that the coherence between frames can be exploited to

facilitate rendering. For applications in which the lighting or material changes gradually, the rendering result of the

last frame provides an excellent initialization for the current frame. With good initial values, the number of iteration

steps can be significantly reduced.

5.4 Editing

With this real-time rendering system, the acquired volumetric material model can be interactively edited with real-

time feedback on the modified appearance. To illustrate this capability, we developed a simple editing system shown

in Figure 9. In addition to painting new values for µ(x) and κ(x), various ways to modify existing µ(x) and κ(x)
are supported. The user can directly adjust µ(x) and κ(x) by multiplying them with or adding them to user-supplied

constants. Alternatively, the user can modulate the µ and κ values within a pattern mask using a texture. With our

volumetric representation, users can also modify a material at specific depth levels. For a demonstration of a material

editing session, please view the supplemental video.

In our system, all editing operations are executed as pixel operations on the GPU. We maintain extra buffers T ′
κ and
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Wax I Wax II Marble  ArtificialStone

Fig. 10. Acquired material samples. Top row: real image of sample. Middle row: reconstructed κ along the surface. Bottom row: reconstructed µ

along the surface. The values of κ and µ are scaled for better viewing.

T ′
µ of the κ and µ textures as rendering targets for editing. In each frame, T ′

κ and T ′
µ are modified by user-specified

operations, and then swapped to Tκ and Tµ for rendering. To support editing operations on local regions, we store the

positions of grid nodes in a texture Tp. Then when the user selects a region on the screen for editing, we compute the

screen projection of each grid node based on its position in the editing shader, and execute the editing operations only

for the nodes within the user-specified local region. In material editing, we do not use the adaptive scheme, but instead

take advantage of the coherence between frames to reduce rendering computation, which allows for more complex

material editing operations to be executed on the GPU.

6. EXPERIMENTAL RESULTS

We have implemented our material acquisition and rendering system on a PC configured with an Intel Core2Duo

2.13GHZ CPU, 4GB memory, and a Geforce 8800GTX graphics card with 768MB graphics memory. The GPU-

based light diffusion and rendering algorithm was implemented in the OpenGL shading language. For the GPU-based

light diffusion computation used in model acquisition, we represent all parameters and computation results as 32-

bit floating-point values for high precision. For light diffusion computations on the polygrid, each channel of κ
and µ is quantized to 8-bits and stored together in 24-bit textures. We use 16-bit floating-point values in rendering

computations, which provides sufficient precision in appearance.

6.1 Model Acquisition

Figure 10 displays the material samples used in our experiments and the acquired κ and µ values along the surfaces

of the material volumes. For these samples, the grid resolutions, lighting configurations, and computation times are

listed in Table II. We set the grid resolutions according to sample size and the material variability in the volume, where

higher resolutions are needed to preserve the rich material variations in detailed volumes. With GPU acceleration, the

reconstruction algorithm gains a fifty-fold increase in speed over a CPU-based implementation on the same platform.

Because of the significant surface reflection of the marble sample, we obtain an approximate measure of its reflectance
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Material Grid Resolution Illumination Computation Time (hrs)

Wax I 130×53×37 back 2.0

Wax II 140×75×48 front 4.0

Marble 256×256×20 back 11.0

Artificial Stone 128×128×41 back 3.0

Table II. Acquisition settings for the different materials.

Error
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1 4 9 16 25 36 49 64

Number of 
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0.024 Wax I Wax II

Marble ArtificialStone

Fig. 11. Model quality vs. number of measurements. Errors of BSSRDFs computed from material volumes acquired from real material samples

using different numbers of measurements.

component with the front-lighting setup and the method in [Tong et al. 2005], which records one image of the sam-

ple under uniform lighting. The diffuse surface reflectance term is obtained by subtracting the multiple scattering

contribution from it.

In theory, the diffuse BSSRDF should be densely sampled to ensure that the acquired material volume generates

accurate surface appearances for arbitrary illumination conditions. However, because of the redundancy in BSSRDF

data, we have found that models acquired from sparsely sampled images provide good results in practice. Note that

each image here corresponds to a 2D slice of the 4D BSSRDF.

To examine the relationship between the number of measurements and model quality, we applied our inverse

diffusion algorithm on all material samples shown in Figure 10. We subdivide the face that receives direct light-

ing into n× n regions that are each separately illuminated. For different n, we acquired n× n images under dif-

ferent illumination as input to our algorithm. Normalized errors were then computed as E = ∑xi ,x j∈A[R′
d(xi,x j)−

Rd(xi,x j)]
2
/

∑xi,x j∈A[Rd(xi,x j)]
2 , where Rd is the diffuse BSSRDF captured from the original volume, and R′

d is that

computed from the acquired material volume. Figure 11 displays the errors of the material models acquired from four

material samples with different numbers of measurements, n = 1,2 . . .8, which indicates that for 16 or more images,

the error is comparable to that reported for the factorized BSSRDF representation in [Peers et al. 2006]. In our current

implementation, we use 16 images under different illumination settings for model acquisition, which provides faithful

rendering results exemplified in Figure 12.

Figure 13 illustrates the role of regularization in optimization. The regularization term adds a smoothness constraint

to κ in solving the non-linear optimization of the acquisition step, while the coefficient λ is used to adjust the ef-

fects of the regularization term in non-linear optimization. Note that without a proper weight, the resulting material
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Fig. 12. Comparison of acquired models to ground truth. Top row: Illumination settings. Front lighting is applied for WaxII while back lighting is

used for the other material samples. Middle row: Rendering results of volumes acquired from 16 images. Bottom row: Real images of the materials.

Fig. 13. Effect of the regularization parameter on optimization. Top row: result acquired with an over-weighted regularization term (λ = 1.0e−4).
Middle Row: result acquired with proper regularization term (λ = 1.0e− 5). Bottom Row: result acquired with an under-weighted regularization

term (λ = 1.0e−6). For each row, (a) is one of the captured images used for optimization. (b) is the image computed from the acquired model with

the illumination condition of image (a). In (c), we compare the values along the 1d scanline in (a) and (b), where the red line represents ground

truth and the blue line represents computed values. (d) and (e) show acquired κ and µ along the top surface. The values of κ and µ are scaled for

better viewing.
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Fig. 14. Accuracy in material model acquisition. (a) Values of κ for the acquired material model (left) at different depth layers below the front face,

and the ground truth (right). (b) Values of µ for the acquired material model (left) at different depths, and the ground truth (right). (c) Errors of

BSSRDFs computed from acquired material model using different numbers of measurements. The material model shown in (a) and (b) is acquired

from 16 measurements.

Model Polygrid Texture Rendering Time Final Speed

Resolution Size (MB) t1/t2/t3 (ms) (fps)

Bunny 253×16×16×16 24.9 3.9/23.2/11.5 25.9 (34.7)

Bust 17×32×32×32 18.9 2.5/19.9/7.0 34.0 (52.7)

Bird 108×24×24×24 39.6 4.0/48.3/13.0 15.3 (24.0)

Hole 36×12×12×12 4.8 1.5/8.9/2.1 80.0 (160.4)

Snail 81×12×12×12 18.9 1.6/14.0/3.1 53.4 (106.7)

Table III. Rendering configuration and performance. For the rendering times, ti indicates the time for the ith rendering pass. The final speed is

measured both without frame coherence and with frame coherence (in parentheses).

model yields an inaccurate fit to the input data. Typically in practice, λ is experimentally set by the user. In our

implementation, we found that 1.0e−5 works well for all samples shown in the paper.

Although our approach effectively acquires a detailed appearance model of subsurface scattering, it cannot deter-

mine the actual material properties and their variations in the volume, especially deep within the volume. This results

from object appearance being relatively insensitive to the material composition far beneath the surface. Figures 14(a)

and (b) illustrates the properties of a material model acquired from 16 measurements of a synthetic volume. In Fig-

ure 14(c), we compare the the BSSRDFs generated from the acquired material model to the BSSRDFs rendered from

the synthetic volume. The acquired material model generates a BSSRDF that can faithfully serve as an appearance

model. On the other hand, it also lacks the precision needed in some applications such as solid texture mapping, where

deep volumes may become exposed on the surface.

6.2 Rendering & Editing

Table III lists the polygrid resolution at the finest level, the texture size, and rendering performance for all the examples

shown in the paper. The polygrid resolution is the product of the number of cubes in the polycube and the grid

resolution in each cube. The polygrid resolution is determined by the resolution of the material volume such that each

material voxel corresponds to one grid cell in the object volume. Our experiments show that the ploygrid model works

well for materials with different scattering properties.

The texture size includes all textures used for light diffusion computation. In this table, the rendering times are

broken down into the three passes, for incident light computation (t1), light diffusion (t2), and final rendering (t3). For

the overall rendering speed, the first number reports the frame rate without frame coherence (i.e., radiances initialized

to zero), while the second number in parentheses gives the speed with frame coherence. In rendering, we use the

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



· 19

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

0.1 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

Error (%)

Amount of 

Computation 

Single Resolution Scheme

Hierarchical Scheme

Adaptive Hierarchical Scheme

Fig. 15. Convergence speed of the three schemes. The X axis represents convergence speed in terms of 100K’s of nodes that are processed.

ambient occlusion to determine visibility for environment lighting, and the shadow buffer for visibility of local lighting.

A three-level polygrid with the adaptive scheme is used in the measurements for this table. In the final rendering step,

specular reflections on the surface are computed with a user-specified Ward model, and single scattering is ignored.

For the model with marble material, the measured surface reflectance term is also added to the multiple scattering in

this step.

Figure 15 charts the convergence speed of the different rendering methods on the hole model. Here, the error

of a result L is computed as ∑x∈A (L(x)−L0(x))
2/∑x∈A L0(x)

2, where L0 is the converged result precomputed with-

out hierarchical and adaptive acceleration. A multi-resolution polygrid with three levels is used in the hierarchical

schemes. The polygrid for the hole model contains 36 cubes, and the grid resolution in each cube at the finest level

is 12×12×12. For the hierarchical method without the adaptive scheme, we use all grid nodes in the light diffusion

computation. In the adaptive scheme, we manually specify the depth of nodes that are involved in computing each

resolution such that the final error is less than 0.5%. It can be seen that the hierarchical scheme can substantially

improve light diffusion performance on the polygrid. With the adaptive scheme, the computation is further accelerated

(a two-fold speedup in this case) to generate a result with an error below a user-specified threshold.

Figure 16 compares images of a bunny model rendered with the polygrid diffusion algorithm and the result rendered

by photon mapping. The volumetric material applied to the bunny shown in Figure 16(a) (d) is modeled by the user,

while the volumetric material shown in Figure 16(e) and (f) is edited from captured marble volume. All results are

rendered under directional lighting, and only multiple scattering is considered. As shown in the figure, visually faithful

results can be generated with our method. The small discrepancy on the bunny ear is caused by the distortion of the

polygrid in that area.

Figures 17 (a) and (b) show rendering results for a bust model whose volumetric material properties are acquired

from a marble sample, and a hole model generated with acquired wax material. Complex surface appearances from

subsurface scattering and volumetric material variations are well preserved with our volumetric appearance model.

In Figure 18, a bird model is rendered with a reconstructed wax material and an artificial stone material. Results

are shown with different viewing and lighting directions. The heterogeneity beneath the surface is well handled in our

modeling and rendering technique.

Rendering results of a bunny with different translucent materials edited by the user are shown in Figure 19. Both the

local scattering properties of the material and their distributions are modified in these cases. With the volumetric ma-

terial model, editing of physical attributes can be done in an intuitive manner. Additional editing results are exhibited

in Figure 1.

Finally, we display the rendering result of a snail in Figure 20. The volumetric material properties of the snail body

are designed by an artist using our editing tool. The artist also painted the opaque snail shell.
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(a) (b)

(c) (d)

(e) (f)

Fig. 16. Comparison of the polygrid based diffusion algorithm to photon mapping. (a)(c)(f) Results rendered by the polygrid-based diffusion

algorithm. (b)(d)(g) Results rendered by photon mapping.

7. CONCLUSION

In this paper, we proposed efficient techniques based on the diffusion equation for modeling and rendering heteroge-

neous translucent materials. A practical scheme is presented for acquiring volumetric appearance models from real

material samples, and for rendering the appearance effects of multiple scattering in real time. With this method, a user

can easily edit translucent materials and their volumetric variations with real-time feedback.

In rendering, the FDM scheme used in this paper can be regarded as an approximate solution for arbitrary-shaped

object volumes. With this approximation, we obtain realistic rendering results and real-time performance. For objects

with fine geometric detail or complex topology, however, the presented polygrid construction scheme may produce

large distortions in some regions, which can lead to rendering artifacts. We intend to address this issue in future work

by examining better methods for mesh and volume parameterization.

Another problem we plan to investigate is acquisition of the single scattering effects and phase functions of hetero-

geneous translucent materials. In addition, we would like to extend our rendering algorithm to real-time deformation

of translucent objects.
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(a) (b) (c) (d)

Fig. 17. Rendering results of the bust and the hole models with materials acquired from real samples. (a)(b) the bust

model rendered with marble material. (c)(d) the hole model rendered with wax.

(a) (b) (c) (d)

Fig. 18. Rendering results of a bird model with different materials. (a)(b) with wax material. (c)(d) with artificial

stone material.

(a) (b) (c) (d)

Fig. 19. Rendering results of a bunny model. (a) Constructed from an acquired wax material. (b-d) Edited with our

system by a user.
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(a) (b) (c)

Fig. 20. The rendering result of a snail with local lighting. The translucent material of the snail body was designed

using our editing tool, while the snail shell was modeled and rendered as an opaque surface.

Appendix A: Adjoint Method for the Inverse Diffusion Problem

In the following, we show the deduction of the adjoint method for M = 1. Generalization to larger values of M is straightforward.

The adjoint function is the Lagrangian multiplier ϕ1(x) in the following augmented objective function:

f̃1(~µ,~κ ;φ1,ϕ1) = f1(µ̄ , κ̄)−

∫

V

ϕ1(x){∇ · [κ(x)∇φ1(x)]−µ(x)φ1(x)}dV ,

where f1(~µ,~κ) =
∫

A

(

Lo,1(x)−LR
o,1(x)

)2
dA + λ

∫

V ‖∇κ‖2 dV . From the boundary condition of Eq. (2) and Eq. (3), we see that

LR
o,1(x) = (φ1(x)−q1(x))/2π , where x ∈ A. The adjoint equation is the equation for ϕ1(x) such that ∂ f̃1/∂φ1 = 0. By definition,

the change in ∂ f̃ /∂φ1 for a small perturbation δφ1 of φ1 is the linear component of the difference f̃1(~µ,~κ;φ1,ϕ1)− f̃1(~µ,~κ;φ1 +
δφ1,ϕ1). By Green’s formula and the boundary condition in Eq. (2) for φ1, we have

f̃1

(

µ̄, κ̄;φ1,ϕ1

)

=

∫

A

(

Lo,1(x)−LR
o,1(x)

)2
dA+λ

∫

V

‖∇κ‖2 dV

−
∫

V

ϕ1(x){∇ · [κ(x)∇φ1(x)]−µ(x)φ1(x)}dV

=

∫

A

[

Lo,1(x)−
1

2π
(φ1(x)−q1(x))

]2

dA+λ

∫

V

‖∇κ‖2 dV

−
∫

V

φ1(x){∇ · [κ(x)∇ϕ1(x)]−µ(x)ϕ1(x)}dV

−
1

2C

∫

A

ϕ1(x)q1(x)dA+
∫

A

[

1

2C
ϕ1(x)+κ(x)

∂ϕ1(x)

∂n

]

φ1(x)dA.
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Therefore, we have

f̃1

(

µ̄, κ̄ ,φ1 +δφ1;ϕ1

)

− f̃1

(

µ̄, κ̄ ,φ1;ϕ1

)

= −
1

π

∫

A

δφ1

[

Lo,1(x)−
1

2π
(φ1(x)−q1(x))

]

dA

−
∫

V

δφ1(x){∇ · [κ(x)∇ϕ1(x)]−µ(x)ϕ1(x)}dV

+

∫

A

[

1

2C
ϕ1(x)+κ(x)

∂ϕ1(x)

∂n

]

δφ1(x)dA+O(‖δφ1‖
2).

As ∂ f̃1/∂φ1 must be a zero operator, the linear component of the above perturbation must be zero for all possible δφ1. So the

adjoint equation is

∇ · [κ(x)∇ϕ1(x)]−µ(x)ϕ1(x) = 0, x ∈V,

ϕ1(x)+2Cκ(x)
∂ϕ1(x)

∂n
=

2C

π

[

Lo,1(x)−
1

2π
(φ1(x)−q1(x))

]

, x ∈ A.

And the gradient of the original function can be solved using the adjoint function as

d f1

dκ
=

∂ f̃1

∂κ
= ∇ϕ1(x) ·∇φ1(x)−2λ∆κ(x),

d f1

dµ
=

∂ f̃1

∂ µ
= ϕ1(x)φ1(x),

x ∈V

with the boundary condition ∂κ/∂n = 0 for κ and ∂ µ/∂n = 0 for µ .

Appendix B: Discrete Partial Derivatives for Forward Diffusion

To compute the gradient and Laplacian of a funtion f on a node v0 of the polygrid, we have

f (v j)− f (v0) ≈
∂ f

∂x
∆x j +

∂ f

∂y
∆y j +

∂ f

∂ z
∆z j

+
1

2
·

∂ 2 f

∂x2
∆x2

j +
1

2
·

∂ 2 f

∂y2
∆y2

j +
1

2
·

∂ 2 f

∂ z2
∆z2

j

+
∂ 2 f

∂x∂y
∆x j∆y j +

∂ 2 f

∂y∂ z
∆y j∆z j +

∂ 2 f

∂ z∂x
∆z j∆x j,

(10)

where v j = v0 +(∆x j,∆y j,∆z j), j = 1,2, . . . ,6 are the six nodes connected to v0. For near-regular grids, if the coordinate directions

are roughly along the directions of the grids, we may assume that

for j = 1,2, |∆y j| ≪ |∆x j| and |∆z j| ≪ |∆x j|;

for j = 3,4, |∆x j| ≪ |∆y j| and |∆z j| ≪ |∆y j|;

for j = 5,6, |∆x j| ≪ |∆z j| and |∆y j| ≪ |∆z j|.

(11)

Since ∂ 2 f
∂ x∂ y

∆x j∆y j ≈ 0, ∂ 2 f
∂ y∂ z

∆y j∆z j ≈ 0, and ∂ 2 f
∂ z∂ x

∆z j∆x j ≈ 0, ∀ j, we may discard the last three terms in (10). Then (10) can be

written in matrix form:
















∆x1 ∆x2
1/2 ∆y1 ∆y2

1/2 ∆z1 ∆z2
1/2

∆x2 ∆x2
2/2 ∆y2 ∆y2

2/2 ∆z2 ∆z2
2/2

∆x3 ∆x2
3/2 ∆y3 ∆y2

3/2 ∆z3 ∆z2
3/2

∆x4 ∆x2
4/2 ∆y4 ∆y2

4/2 ∆z4 ∆z2
4/2

∆x5 ∆x2
5/2 ∆y5 ∆y2

5/2 ∆z5 ∆z2
5/2

∆x6 ∆x2
6/2 ∆y6 ∆y2

6/2 ∆z6 ∆z2
6/2

































∂ f /∂x

∂ 2 f /∂x2

∂ f /∂y

∂ 2 f /∂y2

∂ f /∂ z

∂ 2 f /∂ z2

















=

















f (v1)− f (v0)
f (v2)− f (v0)
f (v3)− f (v0)
f (v4)− f (v0)
f (v5)− f (v0)
f (v6)− f (v0)

















.
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Therefore,
















∂ f /∂x

∂ 2 f /∂x2

∂ f /∂y

∂ 2 f /∂y2

∂ f /∂ z

∂ 2 f /∂ z2

















= W

















f (v1)− f (v0)
f (v2)− f (v0)
f (v3)− f (v0)
f (v4)− f (v0)
f (v5)− f (v0)
f (v6)− f (v0)

















,

where

W =

















∆x1 ∆x2
1/2 ∆y1 ∆y2

1/2 ∆z1 ∆z2
1/2

∆x2 ∆x2
2/2 ∆y2 ∆y2

2/2 ∆z2 ∆z2
2/2

∆x3 ∆x2
3/2 ∆y3 ∆y2

3/2 ∆z3 ∆z2
3/2

∆x4 ∆x2
4/2 ∆y4 ∆y2

4/2 ∆z4 ∆z2
4/2

∆x5 ∆x2
5/2 ∆y5 ∆y2

5/2 ∆z5 ∆z2
5/2

∆x6 ∆x2
6/2 ∆y6 ∆y2

6/2 ∆z6 ∆z2
6/2

















−1

.

If the chosen coordinate is not along the grid directions, we may choose a local coordinate frame (x′,y′,z′), such that the new

coordinate directions are roughly along near-regular grid directions at v0. Due to the rotational invariance of the Laplacian operator

∂ 2 f

∂x2
+

∂ 2 f

∂y2
+

∂ 2 f

∂ z2
=

∂ 2 f

∂x′2
+

∂ 2 f

∂y′2
+

∂ 2 f

∂ z′2
,

we may compute the coefficients of ∂ 2 f /∂x′2, ∂ 2 f /∂y′2, ∂ 2 f /∂ z′2 as linear combinations of f (v j)− f (v0) in the new local

coordinate, and form the coefficient matrix for f (v j)− f (v0) in the original coordinate.

In our application, we define f = κφ as in [Stam 1995], and compute the coefficient matrix W at vi = v0 using a linear system

solver. Then w ji is computed as

w ji = W2 j +W4 j +W6 j .

For the relationships in Eq. (11) to hold on an arbitrary object volume, a conformal mapping between the polygrid in the polycube

and the object volume is needed. Although our mapping may not be exactly conformal, it leads to acceptable solutions.
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