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1 GENERALIZED DERIVATIONS
Recall that our derivations in §4 and §5 of the paper rely on the sim-
plifying assumptions that (i) there is no zero-measure light source
or perfectly specular surface; and (ii) the medium is non-emissive.
We now discuss possible generalizations that relax some of these
assumptions.

1.1 Point Light Sources
We now discuss how our derivations in §4 of the paper can be
extended to support point sources. Other zero-measure light sources
(e.g., directional) can be handled in a similar fashion.

For a uniform point source located at x light with intensity I light,
the in-scattered radiance Lins becomes

Lins(x,ω) =

∫
S2

fp(x,−ω
′,ω)L(1)(x,ω ′) dω ′ +

V (x,x light)T (x,x light) fp(x,x → x light,ω) I light

∥x − x light∥2
.

(1)

Recall that KT L
ins involves an integral of Lins over a straight line.

When Lins takes the form of Eq. (1), it can have jump discontinuities
along this line due to sudden changes in visibilityV . In other words,
when a straight line goes across hard volumetric shadow boundaries
resulting from zero-measure light sources, Lins will be discontinuous
at the line-shadow intersections.
Given x ∈ Ω \ ∂Ω and ω ∈ S2, let Γ(x,ω) ⊂ (0,D) to contain

all discontinuous locations of V (x − τω,x light) with respect to τ
(for 0 < τ < D). Then, according to Reynolds transport theorem
(Theorem 1), the derivative of KTKC L becomes

(∂πKTKC L) (x,ω)

=
∫ D
0 T (x ′,x)

[
σs(x ′) ÛLins(x ′,ω) +

+
(
( Ûσs(x

′) − Σt(x,ω, τ )σs(x
′)
)
Lins(x ′,ω)

]
dτ

+ ÛDT (x0,x)σs(x0)L
ins(x0,ω),

+
∑
τ ∈Γ(x ,ω) Ûτ T (x

′,x)σs(x ′)∆Lins(x ′,ω),

(2)

Authors’ addresses: Cheng Zhang, University of California, Irvine, chengz20@uci.edu;
Lifan Wu, University of California, San Diego, liw086@eng.ucsd.edu; Changxi Zheng,
Columbia University, cxz@cs.columbia.edu; Ioannis Gkioulekas, Carnegie Mellon
University, igkioule@andrew.cmu.edu; Ravi Ramamoorthi, University of Califor-
nia, San Diego, ravir@cs.ucsd.edu; Shuang Zhao, University of California, Irvine,
shz@ics.uci.edu.

where x ′ := x − τω, and

∆Lins(x ′,ω) = lim
ϵ→0−

Lins(x ′ − ϵω, ω) − lim
ϵ→0+

Lins(x ′ − ϵω, ω).

(3)

In general, similar to ÛD, the exact form of Ûτ depends on Ûx and the
scene geometry.

1.2 Specular Surfaces
To handle specular surfaces, two extensions to our method depicted
in the paper are needed.
First, due to specular reflection and refraction, discontinuities

of radiance L(x,ω) with respect to ω (for fixed x) arises from not
only geometric edges but also their virtual images. Thus, the edge
integral terms (e.g., Bins in Eqs. (22) and (23) of the paper) need to
also cover these “virtual edges” which could be difficult to detect.
Second, for non-specular surfaces, the reflected/refracted direc-

tions ω ′ are effectively variables of integrations (over S2) and in-
dependent of the scene parameter π (i.e., Ûω ′ ≡ 0). This has been
discussed in the main paper. For specular surfaces, on the contrary,
ω ′ is typically defined deterministically by the incident direction−ω
(e.g.,ω ′ being the mirrored version of −ω for specular reflections).
Thus, whenω or the mapping betweenω andω ′ is π -dependent,
so will beω ′.

1.3 Volumetric Emission
For emissive media such as flame, the volumetric emission Le in
Eqs. (6) and (10) of the main paper becomes nonzero. In this case,
ÛL(0) derived in Eq. (30) of the paper needs to include an extra term
∂πKT σa L

e, the scene derivative of transported volumetric emission.
This term can be derived in a very similar fashion as Eq. (16) of the
paper and equals

∂π (KT σa L
e)(x,ω)

= ∂π
∫ D
0 T (x ′,x)σa(x ′)Le(x ′,ω) dτ

=
∫ D
0 T (x ′,x)

[
σa(x ′) ÛLe(x ′,ω) +(

Ûσa(x
′) − Σt(x,ω, τ )σa(x

′)
)
Le(x ′,ω)

]
dτ

+ ÛDT (x0,x)σa(x0)L
e(x0,ω),

(4)

where Σt follows the definition in Eq. (17) of the paper, and Ûσa takes
the same form as Eq. (18):

Ûσa(x
′) =
∂σa
∂π

(x ′) + ⟨ Ûx ′,∇σa(x
′)⟩, (5)

with ∇ being the gradient operator.
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Fig. 1. Comparisons between derivative estimations generated by (b) our
method and (c) finite difference (FD). The derivative values are encoded
in false colors. Our results match the FD ones well with the discrepancies
mostly due to FD’s bias.

2 PROOF-OF-CONCEPT RESULTS
We show proof-of-concept results for some of the generalized deriva-
tions from §1 as well as objects with higher-order surfaces (recall
that our results in the main paper all use polygonal meshes). To this
end, we configured three simple virtual scenes as follows.

Point light source. The first example contains a point light source
and a triangular occluder. The virtual camera is configured to only
look at the volumetric shadow casted by the occluder.

Higher-order surface. The second example involves a sphere em-
bedded in an infinite homogeneous medium lit by an area source.

Smooth dielectric interface. The last example includes a smooth
dielectric surface that encloses a heterogeneous medium and is lit
by a collimated beam. The virtual camera focuses at the refracted
beam within the medium.

2.1 Our Results
Validation. Figure 1 shows comparisons of derivatives estimated

using our method and finite difference (FD). The derivatives visual-
ized in this figure are taken with respect to (i) the displacement of
the point source along the x-axis, (ii) the sphere center’s displace-
ment along the x-axis, and (iii) the interface’s refractive index (IOR).
Our results match the FD ones well with the differences mainly due
to FD’s bias.

Inverse rendering examples. Figure 2 shows inverse rendering
results using these examples. In the first example (i.e., point light
source), we search for the 3D location of the light by only looking at
the volumetric shadow casted by the occluder. In the second example,
we optimize the 3D location of the sphere. In the last example, we
optimize the refractive index (IOR) of the smooth dielectric interface.
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Fig. 2. Inverse rendering results. We search for scene parameters using
gradients estimated with our technique. In each example, images on the
top row are used for the optimizations. Those on the bottom row, on the
contrary, are used to visualize the optimization process.

Optimizations driven by derivatives computed using our approach
successfully recover the groundtruth parameters. Please refer to the
supplemental material for animated versions of these results.
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