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Fig. 1. We need a nice teaser!

TBD.

1 INTRODUCTION
TBD

2 RELATED WORK
Differentiable rendering. [Li et al. 2018]

3 PRELIMINARIES

We now briefly revisit the radiative transfer framework (§3.1) and
outline how the radiances given by this framework can be differen-
tiated with respect to scene geometry (§3.2, §3.3).

3.1 Radiative Transfer

Radiative transfer [Chandrasekhar 2013] has been used to model
light transport in participating media in many fields including
biomedical imaging, remote sensing, and computer graphics.

At the core of the radiative transfer framework is the radiative
transfer equation (RTE) that takes the form of a linear transport equa-
tion. Specifically, for a medium that (i) has extinction coefficient o,
scattering coefficient o5, and single-scattering phase function f,; and
(ii) is contained in Q C R? with boundary dQ, the RTE states that
the radiance field L interior of the medium satisfies

L=KrKcL+0. (1)

For any g : (Q \ Q) x $? — Ry, K is the transport operator given
by

D
(Fr g)(x, @) = /0 T x) os(x) g s ) dr,  (2)
where x’ = x — T,

D:=inf{r e Ry : x—tw € IQ}, (3)

and T(x’, x) denotes the transmittance between x’ and x that equals
T
T(x’,x) = exp (—/ ot(x — 7’ ) df’) . (4)
0
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Table 1. List of symbols commonly used in this paper.

Symbol Meaning Def.
L, Ls interior and interfacial radiances (1,7)
Lins in-scattered radiance (interior) (5)
LS emitted radiance (interfacial) 7)
Ly reflected/refracted radiance (interfacial) (??)
LD, 1O indirect and direct radiances (interior) (72, 10)
Q(t) time-varying domain (12)
0Q(t)  time-varying domain boundary (12)
f time-derivative of f (i.e., % 1) (12)
x’, x’ X—Tw, X —T® (1,77
X0, X0 x - Dw, x — Dw (1,7?)
(u,v) dot (inner) product between vectors u and v (12)
x — Yy unit vector pointing from x to y, i.e., ﬁ (29)

Further, K¢ in Eq. (1) is the collision operator which, when applied
to the interior radiance field L, gives the in-scattered radiance L'
as follows:!

L™ (x, ) = (K L)(x, @) = / folx,—0’, @) L(x, @) do".  (5)
SZ
Lastly, the source term Q of the RTE (1) is given by?

Q(x’ C()) = T(xo’ x) LS(x()’ (()), (6)

where x¢ := x — Dw, and L indicates the interfacial radiance that
serves as the boundary condition of the RTE (1) and satisfies the
rendering equation (RE) for all x € 9Q and w € $%:

Ls(x, w) = /S; fs(x,—0', 0) L(x, ®") do” + L (x, o), 7)

=: Li(x,w)

!In this paper, we follow the convention that all directions point away from x, yielding
the negative sign before ’ in Eq. (5).
2When Q is unbounded, D can be infinite for certain x and @, leading to Q(x, @) = 0.
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where fs is the cosine-weighted BSDF, L denotes the emitted radi-
ance, and L} indicates the reflected/refracted radiance. Please refer
to Table 1 for a summary of all commonly used symbols.

Combining the RTE and the RE. According to Egs. (6, 7), the source
term Q of the RTE (1) can be rewritten as

Q=%KsL+LO, ®)
where K is termed as the interfacial scattering operator satisfying
(Ks L)(x, ) = T(x0, x) L§(x0, )

= T(xp, x) /SZ fs(x0, @, @) L(x0, ®") do’, ©)

and

LO(x, @) = T(x0.x) L (x0, @)- (10)
According to Egs. (8-10), the RTE (1) can be rewritten as an equation
that only depends on the interior radiance L:

L=(KrKc +Ks)L+LO. (11)

3.2 Shape Derivatives

This paper focuses on the problem of differentiating L with respect
to scene geometries (depicted with Q and 9Q) or camera poses. To
this end, we model Q and 9 as time-varying quantities, a common
practice in shape optimization [Zhao et al. 2018]. This causes the
radiance L, as the solutions to the RTE (11), to also be time-varying.
Further, the differential changes of L with respect to Q and dQ are
fully captured by the corresponding time derivative L.

Specifically, we use Q(t) and dQ(t) to denote the time-varying
geometries. For each point x(¢) € dQ(t), its velocity at time ¢ is
given by v(x, t) = %(¢) where x denotes the time derivative of x.
In this paper, we assume Q, JQ, and X to be given and focus on
estimating the resulting derivative L.

3.3 Differentiating Integrals over Manifolds

Deriving the time derivatives of radiances requires differentiating
the integrals from the RTE (1) and the RE (7). To this end, we utilize
the Reynolds transport theorem [Leal 2007] originated in fluid me-
chanics. Compared to the work by Li et al. [2018], our derivations
enjoy (i) a cleaner top-down structure; and (ii) the generality to
support subsurface scattering.

THEOREM 1 (REYNOLDS TRANSPORT THEOREM). Let Q(t) be some
evolving n-dimensional manifold with boundary dQ(t) and bound-
ary velocity v(t) at time t. Then, for some function f(x, t) contin-
uous in x and t, it holds that

0 .
a7 (/ fdQ(t)) =/ fdQ(@) +/ (n,v) fd(0Q(1)),
9t \Jo(r) Q) a0(1)

(12)
where f := %f, dQ and d(0Q) respectively denote the measures
induced by Q and 0Q; n indicates the time-varying normal di-
rection for each boundary point (that points toward the exterior
of Q); and (-, -) denotes the dot (inner) product between a pair of
vectors.

3Despite making Q and Q time-varying, we keep using steady-state RTE that assumes
L to reach equilibrium instantaneously.
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In a special case, for classical Riemann integrals where Q is an
interval (a,b) C R, it holds that dQ = {a, b}, and the boundary
integral in Eq. (12) reduces to the sum of the integrand evaluated
at a and b. Additionally, it is easy to verify that (n, v) equals b at
x = b and —a at x = q, yielding

O " peax= [ jena
— x,t)dx = X,1)dx
ot Ja(r) a(t) (13)

+b(1) f(b(t), 1) = a(t) f(a(t), 1),

which is precisely the well-known Leibniz’s rule for differentia-
tion [Flanders 1973].

For integrands with internal discontinuities, one can partition
the integral domain Q(t) so that the function remains piecewise
continuous, leading to the following corollary.

COROLLARY 2. Let f be a scalar-valued function defined on some
evolving n-dimensional manifold Q(t) with “interface”I'(t), an
(n—1)-dimensional submanifold given by the union of the external
boundary 0Q(t) and the internal one containing the discontinuous
locations of f at time t. Then, given interfacial velocity v(t), it
holds that

6 .
ot ( Q(t)fdQ(t)) = /Q(t)fdQ(t) i /r(t) |(n,v)| Af dT(t),
(14)
where®

Af(x) = eli)n&_ f(x+ev(x)) - lin&+ f(x+ev(x)), (15)

for all x € T(t). As a special case, when x approaches I'(t) from
the external of Q(t), the corresponding one-sided limit in Eq. (15)
is set to zero.

“In Eq. (15), the time-dependencies of f, x, and @ are omitted for notational
convenience.

In the rest of this paper, we detail how Corollary 2 can be used to
calculate time derivatives of radiances in §4 and introduce unbiased
Monte Carlo estimators for these derivatives in §5.

4 DIFFERENTIABLE RADIATIVE TRANSFER

In this section, we derive L, time derivatives of the interior radi-
ance L, by differentiating Eq. (11) using Corollary 2.

To simplify the derivations, similar to the work by Li et al. [2018],
we assume that: (i) the RTE and RE parameters oy, o5, fp, fs, and LS
are continuous and time-independent; and (ii) there is no delta light
sources (e.g., point and directional) or ideal specular surfaces (e.g.,
perfect mirrors). We discuss how these assumptions can be relaxed
in §6.

4.1 Overview

We now analyze the differentiation of interior radiance L at the
operator level. Let K := K1Kc + Ks, the RTE (11) can be rewritten
as L = KL+ L, whose time derivative is

L=2(KL+L19)= 2(KL)+LO. (16)
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Outline of Our Derivations

§4.3
—_——
.=%7<T7(CL + %7(5[,+ AN
N——— —— ———— —
§4.2 §4.4 §4.5

Fig. 2. An outline of our derivations in §4. To derive L, we differentiate
the transport operator Kt in §4.2, the collision operator K¢ in §4.3, the
interfacial scattering operator Ks in §4.4, and the source term LO in §4.5.

As the operator K involves multiple integrals, according to Corol-
lary 2, we know that the time derivative of KL takes the form

DKL) =KL+KL+KgL=(K+Ks)L+KL  (17)

where Kp L arises from differentiating non-radiance terms as well
as the boundary integrals in Egs. (12, 14).

Let K := K+%g. Combining Egs. (16, 17) yields a linear transport
equation of L:

L=Ki+%yL+1O, (18)

which we term as the differential radiative transfer equation (DRTE).
The solution L of the DRTE can be expressed as a Neumann series
of the form

i-= ivc" (W0L+L'(°)). (19)
n=0

Despite the conceptually simple derivation of the DRTE (18),
the actual form of L is complicated due to the complexity of the
operators involved (i.e., KT, Kc, and Ks). In the rest of this section,
we derive the differential forms of these operators individually.
Figure 2 outlines the structure of our derivations.

In practice, what we generally need is to estimate I at some
specific time ¢. Thus, without loss of generality, we focus on the
derivatives at t = 0 in the rest of this paper.

4.2 Differentiation of the Transport Operator

The first term of Figure 2, i.e., %‘KT KclL = %‘KT L% involves
differentiating the transport operator Kt. Given potentially time-
varying* x € Q\ 9Q and w € S$?, it holds that

(%'KT Lms) (x,w) = / T(x',x) os(x") L™ (x/, w) dr
0

D .
+ /0 % [T(x’, x) o5(x")] L™ (x, w) dT (20)

+ D T(xo, x) 05(x0) L™ (x0, @),

with x” := x — Tw, and x9 = x — Dw. Notice that, the assumptions
expressed at the beginning of this section ensures the integrand
of Kt L™ to be continuous in 7 for 0 < 7 < D, allowing us to
differentiate %t L™ using Theorem 1. We discuss the generalized
forms of Eq. (20) in §6.1.

4We allow both x and  to be time-varying in our derivations for handling scenes
with moving cameras. Please refer to §4.6 to more details.
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To derive %T(x’, x) os(x”), we have

ds(x’) = (Vos(x"), ), (21)

where X’ = x — 7w and
' 7 a 4 17 7 ’
T(x',x) = o exp - ot(x")dr’| = -T(x', x) Z(x, 0, 7), (22)
0
where x”/ :=x —17'w,x” = x —’®, and
T T
Si(x, w,7) = / Gt(x")dr’ = / (Vor(x"), %"y de’.  (23)
0 0

Lastly, combining Egs. (20-23) gives
(%WT LmS) (x, ®) = / T(x’, x) 05(x") L (x’, ) dr
0

D .
+ / T(x’, x)(Gs(x") — Zt(x, w, 7) 05(x")) L™ (x”, @) d
0

+ D T(x9, x) o5(x0) Lins(xo, ),
(29)

where D, Li“S(xo, w), and Lins(x', w) are derived in §4.2.1, §4.2.2,
and §4.3, respectively.

At a high level, the last two terms on the RHS of Eq. (24) corre-
spond to the Kj operator in the DRTE (18) while the first one to
both K and Kj.

4.2.1 Derivation of D. Differentiating Kt L' requires calculat-
ing D, the change rate of the line integral’s upper-bound.

Given x and o, assume that the boundary 0Q(t) has an implicit
representation F(y, t) = 0 locally around the intersection with the
ray (x, —®).> Then, substituting y with the ray equation yields

F(x - Dw,t) = 0. (25)

Assuming the (minimal positive) solution to this equation to be D(t),
then D = %D| 1=0" For instance, for a plane with normal n that
translates uniformly with velocity v, D = {(n, X — v)/(n, ®).

Please refer to Appendix B for detailed derivations of D under a
few configurations. In general, when D(t) has an analytical form, D
can be obtained via symbolic/automated differentiation.

4.2.2 Boundary in-scattered radiance. The time derivative of Kr L™
expressed in Eqs. (20, 24) also involves the in-scattered radiance LS
evaluated at some boundary location xg. This term arises from the
boundary term of Reynolds’ theorem (12).

To properly obtain L (x, @) that includes an integral of (phase-
function-modulated) radiance over all directions, the calculation
needs to be restricted to the same side of the boundary as x. Precisely,
let Hy := {0’ € §* : {(n(xg),®’) > 0}, and H_ := {0’ € §?
(n(xg), w’) < 0}, where n(xy) denotes the surface normal at xg
with (n(xp), @) < 0. Then, as illustrated in Figure 3, we have

L™ (xp. ) = / fo(x0. 0", ) Lxo, ') deo’

e (26)

+/ fp(xo,—w',w)LS(xo,m’)dm’.
H_

5The existence of F is guaranteed by the implicit function theorem.
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Fig. 3. Calculating the in-scattered radiance L™ at location xy € dQ with
direction @ pointing toward the interior of the medium (illustrated in gray).

4.3 Differentiation of the Collision Operator

We now derive the time derivative of the in-scattered radiance
L™ = % L defined in Eq. (5). Since L(x, @) generally has jump
discontinuities in @ (for fixed x) due to visibility changes, we use
Corollary 2 to derive LS.

Let S(x) C S? to be a set of spherical curves capturing all discontin-
uous locations of fj(x, —@’, ®) L(x, ®") in ’.® Then, for x € Q\9Q
and € S? that are potentially time-varying, we have

LinS(xy w) - 4/82 fp(x, _(D,, (L)) L(x’ (I)’) dw, +
/sz fox.~0', @) L(x, @) do’ + (27)

/%( : [(n, &")| fo(x,—’, @) AL(x, ") d6(w"),

where n, &’ respectively denote the normal and velocity of S(x)
at @’ and are derived below; ¢ indicates the curve-length measure;
and
AL(x,®’) = lim L(x+exX, 0’ +e®’)
€e—0~ ‘ ( 9 8)
— lim L(x +ex, 0" + e ).
e—07
In Eq. (27), fp(x, —@’, @) can be time-varying in general despite
having time-independent formulation. Similar to D, fp(x, —0’, 0)
can generally be obtained using symbolic/automated differentiation.
Additionally, it is usually desired to have the last integral in
Eq. (30) to be defined over a subset of 9Q. To this end, let 9Q(x) C
0Q to denote all the geometric edges that can cause discontinuities
when viewed from x. Specifically, these include all boundary and
silhouette edges (i.e., those shared by one front- and one back-facing
faces). Then, it holds that

/S ( )|<n, ") folx,—@’, @) AL(x, ®”) d(w)

_ o)
= Lol go = o) pexmver e
Mlxy = ) Vixy) T ),

where y — x indicates the normalized direction from y to x, V(x, y)
denotes the mutual visibility between x and y, and 0 is the angle be-
tween the tangent direction at y and y — x. Previously, this change-
of-measure term (i.e., sin 8/|ly — x||) was also used by Li et al. [2018].

%Since we assume the phase function f;, to be continuous, S(x) is solely determined
by the discontinuity of L.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: July 2019.

Fig. 4. Calculate projected velocity @’. Given the velocity of y relative
to x, i.e., ¥ — X, one needs to (i) project it to the surface of a unit sphere
centered at x, yielding (y — x)/|ly — x ||; (ii) invert the projected velocity
to align it with w’, yielding (x — y)/|ly — x ||; and (iii) take the component
(illustrated in red) of the inverted velocity that is within the tangent plane
at w’, yielding @ expressed in Eq. (32).

Combining Eqs. (27, 29) yields

105, o) = /S ol —a, @) Ex, ) o +

/SZ fplx,—0', 0) L(x, ") do’ +

, (30)
AQ(x) Kn, m(y — x)>‘ fp(x,x - Y, )
in 0
AL,y = D)V y) = dlw),

where n, %(y — x) = @’, and AL are further derived below.

At a high level, the first integral in Eq. (30) contributes to the K
operator in the DRTE (18) while the remaining two join %p. Another
important observations is that, even when w is time-varying, o’
for L(x, ®’) and L(x, ®’) in Eq. (30) is time-independent as it arises
from integrals that are constantly over S2.

Normal and velocity. We now derive the normal n and velocity &’
in Egs. (30, 29). The normal n, which always lies in the tangent plane
at @’, relies on the geometry of 9Q(x). In case of polygonal meshes,
0Q(x) is comprised of individual face edges. For each edge segment
with endpoints p and q, its projection on a unit sphere centered at
x is an arc with normal

_ _(p-x)x(g-x)
e —x) % (g —x)ll

For any point y on the segment (p, q) with velocity y, let 0’ =y —
x. Then the velocity of @’ caused by that of x and y equals

n

(31)

., 0 . .
w = E(y — x) = 9(y) - @’ (3(y), @'), (32)
where o(y) := (x — y)/|ly — x||, as illustrated in Figure 4.

Calculating AL. The discontinuities of L(x, ®’) in w’, with the
absence of delta light sources and ideal specular surfaces, generally

means the corresponding integral bounds d to be also discontinuous.
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Fig. 5. Calculating AL. In this 2D example, the orange rectangle is trans-
lating upward with a constant velocity, and its top-left corner creates a
geometric discontinuity when viewed from x (that is stationary). Let o’
to denote the direction corresponding to this discontinuity (i.e., the ray
(x, —w') intersects the orange rectangle at its top-left corner). Then, @’ ro-
tates counterclockwise with some velocity @’. Based on these observations,
D, D*, x~,and x* defined in Egs. (33, 34) are illustrated.

For each @’ € S(x), let

D™ := lim D(x +ex, 0’ +ea’),
€—0~ (33)
DT := lim D(x +ex, 0" +e®’),
e—0*
and
x =x-D o, xt:=x-D'w'. (34)
Then, it holds that
D_ .
AL(x, ") = / T(x', x) os(x") L' (x", @") dr
D* (35)

+T(x",x)Ls(x™, 0') = T(x", x) Ls(x*, ®”).

Notice that it is possible for DT > D™, In this case, the integral on
the RHS of Eq. (35) takes a negative value. Figure 5 illustrates a 2D
example for calculating AL.

4.4 Differentiation of the Interfacial Scattering Operator

We now derive the third term in Figure 2, the time derivative of
Ks L given by Eq. (9).
Let x¢ := x — Dw, then x¢ = %(x - Dw) = x — (Dw + D®), and
. d D
T(xg,x) = — exp (—/ at(x”) dr')
ot 0

(36)

T( 6 D 144 ’
- XO,X)E ; ot(x")dr

_T(xO! x) (Zt(x, , D) + D Ut(xo)) 5

where x” := x — ', and % follows the definition in Eq. (23).
Compared to T(x’, x) given by Eq. (22), T(xo, x) has one more term
D oy(x) since D is generally time-varying while 7 is not.

Recall that (Ks L)(x, @) = T(xp, @) L{(x0, ®). Provided Eq. (36),
it follows that

Submission ID: XXX. 2019-04-15 16:04. Page 5 of 1-10.
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i) L D KsL
§4.5, Eq. (39) §4, Fig. 2 §4.4, Eq. (37)
i?{ Lins jins ir
ot T s
§4.2, Eq. (24) §4.3, Eq. (30) §4.4, Eq. (38)
LS at boundary AL

§4.2.2, Eq. (26) §4.3, Egs. (28, 35)

Fig. 6. A summary of dependencies between L-related quantities derived in
§4. In this figure, an arrow from A to B indicates that A depends on B. The
cycles in this diagram indicate that the whole system effectively forms a
transport equation of L, as previously showed by the DRTE (18).

(2% L) (x 0) = [T(x0, %) Li(x0, 0)]
= T(xo, @) L% (x0, ®) + T(x0, ®) L% (x0, @)

= T(x07 (‘)) [Lg(x(b (1)) - (Zt(x, , D) +D O't(xo)) Lg(xoy (1))] P

(37)
where
Li(x, 0) = /SZ fiolx, 0, 0) L(x, »") do’
+ / fs(x, o', ) L(x, ®") do’
SZ
(38)
o 520 =) A x = w0
sin 0
AL(x,y = x)V(x,y) Ty == dl(y).

In Eq. (38), AL follows Egs. (28, 35), and fs can generally be ob-
tained using symbolic/automated differentiation, analogous to fp.
At a high level, the first term on the RHS of Eq. (38) corresponds to
the K operator in the DRTE (18) while the others to Kp.

4.5 Completing L

The last term L©) in Figure 2, which acts as the source term of the
DRTE (18), equals

LO(x, @) = Z:[T(x0. x) L (x0, @)]
= T(x0, x) LS (x0, @) + T(x0, x) LS (x0, ®)

= T(x0, x) [L§(x0, @) — (Zt(x, @, D) + D o1(x0)) LS (%0, @)] ,
(39)

Similar to f, and fs, L¢(x, @) can be nonzero and obtained using
symbolic/automated differentiation.

Putting together. Combining (i) Eq. (24) in §4.2 that differentiates
Kr, (ii) Eq. (30) in §4.3 that handles K, (iii) Eqs. (37, 38) in §4.4 that
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differentiate Ks, and (iv) Eq. (39) above that differentiates L© com-
pletes our derivation of L outlined in Figure. (2). Figure 6 illustrates
the dependencies between the previously derived quantities.

Homogeneous Media. Our previous derivations enjoy the gener-
ality for handling media with spatially varying radiative transfer
parameters o, o5, and fp.

On the other hand, for homogeneous media with spatially (and
temporally) invariant parameters, the time derivatives of interior
and in-scattered radiances simplify considerably:

D .
Lix,w) = / e g [ (x/, w)dr +
0

(40)
e | Ly(xo. @) + D (o L™ (x0, @) = ot Ls(x0, @) .
jins ) — _ /’ 1 ] " deo'
L' (x, w) /S.pr(ww)L(x(o)(o+
/ fp(~o’, @) L(x, ") do’ +
” ) (41)
Lo [ 80 = )] ot = 9.9
AL(x,y — x)V(x,y) ——— ” no < dé(y),
1Ok, w) = e P [L$ (x0, @) — D o L(x0, @)] (42)

We introduce Monte Carlo estimators for homogeneous media
based on Egs. (40, 41) in §5 and discuss generalizations to heteroge-
neous media in §6.2.

4.6 Differentiating Pixel Intensities

In physically based rendering, the intensity of each pixel is typi-
cally modeled as the inner product between the incident radiance L
and some (normalized) reconstruction kernel K over the pixel foot-
print  on the image plane:

I= / L(x, w(x)) K(x) dx, (43)
7)

where the exact form of w(x) depends on the camera model. A
perspective camera with projection center x“®™, for instance, has
w(x) = x — xm,

When K is time-invariant and continuous in x, Eq. (43) can be
differentiated via

f:/L(x,w(x))K(x)dx

r (44)

+ / [{n, v)| AL(x, w(x)) K(x) df(x),
P

where 0P denotes all discontinuities of L(x, w(x)), and n, v capture
the image-plane normal and velocity of these discontinuities.

Notice that, when the camera’s location or orientation is time-
varying (which is required for optimizing camera pose), so be the
corresponding x and w(x) in Eqgs. (43, 44). This is why our deriva-
tions of L in the previous subsections allow both x and  to be
time-varying.
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5 UNBIASED MONTE CARLO ESTIMATORS

In this section, we aim to introduce an unbiased Monte Carlo esti-
mator for the time derivatives of the interior radiance L. To simplify
the derivations, we focus on homogeneous media based on time
derivatives expressed in §4.5. We discuss how our method can be
extended to support heterogeneous media in §6.2.

Specifically, we build a Monte Carlo estimator analogous to path
tracing with next-event estimation (NEE). Let

LW =1 -1 = (% K¢ + Ks) L. (45)
Then, for homogeneous media, L™ can be obtained by subtracting

L© given by Eq. (42) from L provided by Eq. (40), leading to

D .
1D(x, w) = / e g L (x/, w)dr
0 (46)

+e"oD [Lg(xo, w)+D (O’s L% (x, @) — ot L (xo, w))] .

Based on the decomposition of . = LD + 1O we can rewrite

Egs. (38, 41) as
Li(x, w) = / fs(x, o/, 0) LV (x, ") do’ +
SZ

/ filx, 0, 0) 1O (x, ") do’ +
SZ

/SZ fs(x, 0", 0) L(x, »’) do’ + (47)
9
AL(x,y - x)V(x,y) ——— ” no X d(y),
1(x, ) = /S o' w) (D(x, 0")do’ +
/ f-o', o) 1Ok, o) do” +
SZ
/S2 fr(~@', @) L(x, 0) do” + (48)
a9
Lofesr-linom
AL(x,y = x)V(x,y) ——— ” no m dé(y).

Since L only involves known quantities, the integrals on LO in
Egs. (47, 48) can be estimated directly. Similar to conventional path
tracing, this can be done using light source and phase function/BSDF
samplings combined with MIS.

Algorithm 1 provides the pseudocode of an unbiased Monte Carlo
estimator of . based on Egs. (46-48). Algorithms 2 and 3 outline
how AL and L1", two key ingredients of L, can be estimated based
on Eq. (35) as well as Egs. (5, 26).

[TODO: Go over Algorithm 1 in text.]

6 GENERALIZATIONS

Recall that our derivations in §4 and §5 rely on a few simplifying
assumptions:

Submission ID: XXX. 2019-04-15 16:04. Page 6 of 1-10.

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

684



685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

734

736
737
738
739
740
741

A Differential Theory of Radiative Transfer + 39:7

Algorithm 1 Unbiased Monte Carlo estimator of L

1: function L(x, X, @, ®)
2 Calculate D and D based on x, x, w, and @ »> Appendix B
3 L« 1O, %, ®) > (39)
4 Tpath < 1 > path throughput
5 while true do
6 7 « —log(rand())/ ot
7 if 7 < D then
8 X—X—-Tw >x € Q)\oQ
9 X—X—-T0
10: Tpath < %ath(ffs/at)
11: Estimate vy = fgz f-o', o) 1O(x, ") dew
12: if |®|| > 0 then
13: Estimate vy = fSZ fp(—w’, o) L(x, ») dw
14: else
15: v «— 0
16: end if
17: Draw y from dQ(x) with probability p(y)
18: o —(y—>x)
19: Calculate n, &’ using Egs. (31, 32)
20 AL «— AL(x, %, ", ®") > Alg. 2
2 v [(n, )] fol(~', @) AL eyt
22: L—L+ (Z)() +01 + vz)%ath
23: Draw @’ ~ fp(-o’, ®)
24: w—w,0—0
25: else
26: x —x-Dw >x €0Q
27: X —x-Dw-Do
28: Estimate vy = .[SZ fi(x, —0’, @) LO(x, 0") dew
29: Estimate vy = fSZ fi(x, —0’, @) L(x, ®") do
30: Draw y from 0Q(x) with probability p(y)
31: o —(y—>x)
32: Calculate n, @ using Egs. (31, 32)
33: AL — AL(x, x, 0, ®") > Alg. 2
30 v I{m &) filx. ~a ) AL TS
35: Estimate L'™ = L™(x, w) > Alg. 3
36: Estimate L} = Li(x, )
37: Le—L+ [‘Uo +01+02+ D (O’s Lins — Ot Lg)] 7;)ath
38: Draw ’ with probability p(w”)
3 Toath — Tpath (5, ~0, @)/p(@”))
40: w—o,0—0
41: end if
42: Calculate D and D based on x, x, @, and @
43: end while
44: return L

45: end function

o There is no delta light source or perfectly specular surface;
o All material parameters are continuous and time-independent;
o All scene geometries are depicted using polygonal meshes.

We now discuss possible generalizations of our previous derivations
by relaxing some of these assumptions.
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Algorithm 2 Unbiased Monte Carlo estimator of AL

1: function AL(x, X, @, ®)

2 Calculate D™ and D" based on x, X, w,and @ > Eq. (33)
3 X —x-D wx"—x-D'w

4 Estimate Ly = Ls(x ™, @) and LY = Ly(x™, w)

5: AL « T(x~,x) Ly = T(x",x)L}

6 Dy < min(D~, DY)

7 7 « Dy — log(rand())/ ot

8 if 7 < max(D~, D) then

9 x' —x-Tw

10: v« T(x,x — Dy ) gjg:; LS(x’, w)
11: if D* < D™ then

12: AL — AL+v

13: else

14: AL «— AL -v

15: end if

16: end if

17: return AL

18: end function

6.1 Point Light Sources

We now discuss how our derivations in §4 can be extended to sup-
port point sources. Other delta light sources (e.g., directional) can
be handled in a similar manner.

For a uniform point source located at x
LS becomes

light \ith intensity light
[ (x, ) = /S o=, ) IV(x, ') doo” +

V(x, xlight) T(x, xhght)fi)(x, x — xlight’ ®) Jlight
light“Z ’

(49)

|x —x

Recall that, according to Eq. (46), L(l)(x, ) involves an integral of
L% gvera straight line. When L™ takes the form of Eq. (49), it can
have jump discontinuities along this line due to the sudden changes
in visibility V. In other words, when a straight line goes across hard
volumetric shadow boundaries resulting from delta light sources,
LS will be discontinuous at the line-shadow intersections.

Algorithm 3 Unbiased Monte Carlo estimator of LIS

1. function L™(x, w)

2 Draw @’ ~ fp(-o’, ®)

3 if x € 9Q then

4 if (n(x), ®’) > 0 then

5 Estimate L™ = L(x, »’)
6 else

7 Estimate L™ = Ly(x, w’)
8 end if

9: else
10: Estimate L™ = L(x, w’)

11 end if

12: return L

13: end function
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Givenx € Q\ Q and w € §?, let I'(x, ®) C (0, D) to contain all
discontinuous locations of V(x — rw, x!8) for 0 < 7 < D. Then,
according to Corollary 2, we have

D .
(%(KT Lim) (x, ) = / T(x", x) os(x") 1P (x’, ) dr
0

D .
. / T, X)(65(x") — S(x. @, 7) 05(x")) L™(x', ) dr
0

(50)
+ D T(x9, x) 05(x0) Lins(xo, ),
Y TR D) 6 AL (' w),
rel(x,w)
where x’ := x — Tw, and
AL™S(x’, @) = lim LPS(x + e(x' — tw — T0), @ + €D)
€= (51)

— lim I™(x' +e(x' — tw - 10), @ + €d).
e—0"

In general, similar to D, the exact form of 7 depends on x and the
time-varying scene geometry. When the shadow boundary is created
by a point light source and a straight edge, 7 takes identical forms
as D given by Egs. (81, 82).

6.2 Heterogeneity
TBD.

7 GRADIENT-BASED OPTIMIZATION OF SCENE
GEOMETRY

TBD.

8 RESULTS

We implemented Algorithms 1, 2, and 3 outlined in §5 in C++ using
the Embree ray tracer. Additionally, we created a few standalone
implementations to demonstrate our generalized derivations (§6).

8.1 Validation and Evaluation
Validation. TBD

Performance. TBD

8.2 Main Results
TBD

8.3 Generalizations
Point light source. TBD

Heterogeneous medium. TBD

Higher-order surface. TBD

8.4 Limitations and Future Work
TBD.

9 CONCLUSION
TBD.
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A EXAMPLES

Example 1. Let Q(r) := {x € R?
centered at the origin with radius r and

1
I(r) = /Q " T 44 (52)

where dA denotes the area measure. In this case, the boundary is
simply the circumference of the disc: dQ(r) = {x € R? : ||x|| = r}.
Then, since the integrand 1/||x|| does not depend on r, according to
Theorem 1, it holds that

(i 1) (r) = / (). 0@ 47y
oQ(r)

x|l < r} be a 2D disc

or ]
L[ et
0Q(r)

r

(53)

where d¢ denotes the curve length measure. Based on the parame-
terization of Q, it holds that the normal velocity (n(x), v(x)) on any
point x on its boundary dQ equals one constantly. Thus, Eq. (53)
becomes

d 1 1
(EI) (r)= -/c')Q(r) - dé(x) = 2nr - o= 2, (54)

which agrees with the result obtained by directly differentiating
Eq. (52). Specifically, it can be shown that I(r) = 2xr, yielding

(%I) (r) = 2.

Example 2. We now alter the first example by making the inte-
grand to depend on r:

.
I(r) = /Q " T 400 (55)

Then, it holds that I(r) = 2r2. Since %(r/”x”) = 1/||x]|, we have

d 1
(51) "= -/Q(r) Toef] 449 a9(r) délx) = dxr, - (56)

=2rr =2rr
which agrees with (%1) (r)= %(anz) = 4rr.

Example 3. We now extend the previous example to 3D by letting
Qr):={xeR3 : |x|| <7},0Q(r) = {x eR® : ||x|| =r}, and

1(r) = /Q " WdV(x), (57)
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Fig. 7. Calculating the projected velocity for Example 5.

where dV denotes the volume measure. Then, it holds that I(r) =
4rr®. As £ (r/llx]I) = llx]| 72,

0 1 1
(EI) (r) = /g;(r) W dV(x) + s0() ;dA(x) = 8nr, (58)

=4nr =d4nr

which agrees with the direct differentiation of I(r).

Example 4. We now consider an example where the integrand is
discontinuous on the boundary. Specifically, for all x € R3, let

foeln) = {1 el <7, (59)

undefined ||x|| > r.

Note that, although f is undefined when ||x|| = r, it remains inte-
grable over Q(r) under the volume measure. Let

1) = /Q v (60)

It is easy to verify that I(r) = %77.’7‘3. Differentiating Eq. (60) using
Corollary 2 yields

(%I) (r) = ./r(r) eli%l- flx+ev(x) | r) dA(x) = 4nr?,  (61)

=1
which agrees with direct differentiation of I as % (%an) = 412,

Example 5. In this example, we consider the derivative of the
solid angle (viewed from the origin) subtended by a unit-radius
sphere centered at (0, 0, d) with d > 1. Let Q be the projection of the
sphere on S?, which is a spherical cap, then the solid angle equals
the surface area of Q given by

1(d) = /Q “ dA(w). (62)

According to Theorem 1, differentiating Eq. (62) leads to

0
(%I) ) = /a o (1) 100 400, (63)
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where n(w) and v(w) are the normal and velocity of the boundary

0Q at w, respectively. Note that both n(w) and v(w) lie within

the tangent plane at w. As shown in the Figure 7, it holds that

(n(w), v(w)) = —1/(dVd? - 1) for all @ € 6Q(d). Thus,
0 2

—I|(d)= ————.

(361 )( ) d2Vd? -1

On the other hand, we know that I(d) = 27(1 — y/1 — (1/d)?). Dif-
ferentiating this symbolically yields the same answer as Eq. (64).

(64)

B DERIVATIONS OF D FOR SPECIFIC SHAPES

In this section, we provide derivations of D from Egs. (20-24) for a
few specific geometric shapes and velocities.

B.1 Planar Surfaces
We start with deriving D for piecewise-planar geometries (e.g., polyg-
onal meshes).

Translation. Consider a plane that is given by {y : (n,y) =
(n,p)} att = 0 and translates under spatially and temporally in-
variant velocity ». Then, at time ¢, the plane equation becomes

(n,y) = (n,p) + (n,v)t. (65)
Then, substituting y with the ray equation with time-varying ori-
gin x and time-independent direction w gives

(n,x —dw) = (n,p) + (n,v)t, (66)
which in turn leads to
Dy = mX=p-to) 67)
(n, )

Lastly, D can be obtained by differentiating Eq. (67). When x and
are both time-varying,
D= iD _ (n,x—v)(n,w)—(n,x—p)(n,(b), (68)
ot | (n, )2
where x and @ denotes the time derivative of x and w (at time
£ =0).

Linear transformation. Consider a plane transformed linearly via
some matrix M(t) € R¥3 such that M is continuous in ¢ and M(0)
equals the identity matrix. Then, the plane at time ¢ becomes

Mt)yy :n" M )Mty =n” M () M(t)p}.  (69)
Lety’ := M(t)y and m := M~ T (t) n, Eq. (69) becomes
{y': (m.y") = (m. M(t) p)}. (70)
Substituting y” with the ray equation gives
(m,x — Dw) = (m,x) — (m,w)D = (m, M(t) p). (71)
It follows that
(mx = M(©)p) _ (M Ox-p)

D) = (M (D) @)

(m, w) (72)

Then,
_{n,Hx + x)(n, @) - (n,x - p){n, Ho + ®)

b (n.w)?

(73)
.— 0 (p-1
where H := £-(M™)|,_,.
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For instance, rotations around the z-axis can be modeled as

cost —sint 0
M(t) =|sint cost Of. (74)
0 0 1
Then,
- 0 1 0
oM™!
H= — =[-1 o of. (75)
Fli=o \o 0 o
In case of uniform scaling, we can use
et 0 0 -1 0 0
M@)=[0 e 0|, H=l0 -1 o0]. (76)
0 o0 e 0 o0 -1
Similarly, for (nonuniform) scaling along the x-axis, we have
et 0 0 -1 0 0
MBH=[o 1 o, H=[o o o]. (77)
0 0 1 0 0 0

Triangle with moving vertices. Lastly, we consider the plane de-
termined by a triangle with time-varying vertex locations
pt) == (po+tvp), q(t):=(qo+tvg), r(t):=(ro+toy). (78)
Let eg := po—qo, €1 := ro—qo, Avp = vp —vgq, and Avq == v, —vgq.
The plane equation at time ¢ is
(n(t),y) = (n(t),q(1)), (79)
where n(t) = (eo + tAvg) X (e1 + tAv;). Then, substituting y in
Eq. (79) with the ray equation (x — Dw) yields
(n(t), x — q(1))

PO = ey

(80)
and

D

. (1, Ax) + (n,x —vg))(n, w) — (n, Ax)(n, w)
= , (81)
(n, w)?
where Ax := x(0) — qo, n := n(0) = eg X €1, and i := %”'t:o =
Avg X e1 + eg X Av;. In a special case where only p has nonzero
velocity (ie., [|[vpll > 0 and |lvgl = [lor || = 0), Eq. (81) reduces to

5 _ (i, Ax) + (n, x)){(n, ®) — (n, Ax)({n, ®) + (n, ®))

D o) . (82)

withnn = vp X ey.

B.2 Higher-Order Surfaces

§B.1 focuses on planar geometries. We now derive D for surfaces
with higher-order smoothnesses (e.g., spheres).

Sphere (translation). Consider a sphere that has radius r, is cen-
tered at the origin, and translates with time-independent velocity .
Given x and w, the ray (x, —®) intersects the sphere at time ¢ if and
only if

|l(x—tv)—Dwl||?~r? = D*-2(x—tv, w)D+||x—tov||>=r? = 0, (83)

which is a quadratic equation in D. Without loss of generality, we
consider the case where x is outside the sphere (i.e., ||x|| > r) and
pick the smaller root:

D(t) = (x — tv, @) — V{(x — tv, @)% — ||x — to|2 + 12,  (84)

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: July 2019.

which can be differentiated symbolically to obtain D. For instance,
when ||x|| > 0 and ||@|| = 0, it holds that

B (x,v) + (x,0){(x — v, ®) — (x,X)
Vix, ) — [[x[[Z + 72 '

We omit the general form of D here for notational simplicity.

D={(x-v,w) (85)

Sphere (uniform scaling). When a sphere scales uniformly around
its center, the ray (x, —) intersects the sphere at time ¢ if

lx = Dw||? = (r + 1) = D? = 2(x, @)D + ||x||?> = (r + 1)?> = 0. (86)

Considering again the case where x lies outside the sphere leads to

D(t) = {x,®) — Vt2 + 2rt + (x, )2 — || x| +r2.  (87)
Then,

_r+{x 0)((X, ) + (x,®)) - (x,X)

D: ., . .
(o) o) Vi o~ xlE + 72

(88)
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