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This paper introduces a new family of hybrid estimators aimed at controlling the efficiency 
of Monte Carlo computations in particle transport problems. In this context, efficiency 
is usually measured by the figure of merit (FOM) given by the inverse product of 
the estimator variance Var[ξ ] and the run time T : FOM := (Var[ξ ] T )−1. Previously, we 
developed a new family of transport-constrained unbiased radiance estimators (T-CURE) 
that generalize the conventional collision and track length estimators [1] and provide 
1–2 orders of magnitude additional variance reduction. However, these gains in variance 
reduction are partly offset by increases in overhead time [2], lowering their computational 
efficiency. Here we show that combining T-CURE estimation with conventional terminal 
estimation within each individual biography can moderate the efficiency of the resulting 
“hybrid” estimator without introducing bias in the computation. This is achieved by 
treating only the refractive interface crossings with the extended next event estimator, 
and all others by standard terminal estimators. This is because when there are index-
mismatched interfaces between the collision location and the detector, the T-CURE 
computation rapidly becomes intractable due to the large number of refractions and 
reflections that can arise. We illustrate the gains in efficiency by comparing our hybrid 
strategy with more conventional estimation methods in a series of multi-layer numerical 
examples.

© 2021 Published by Elsevier Inc.

1. Introduction

When performing a Monte Carlo simulation, it is not uncommon that the application of variance reduction strategies 
also produces increased computational costs. The overall impact on the figure of merit

FOM = 1

σ 2T
, (1)

is then unclear. An example of this occurs when one introduces weights in generating photon biographies and replaces 
absorption by weight reduction, either discrete or continuous [3]. Disallowing absorption in favor of multiplying the weight 
by the survival fraction μs/μt (where μs and μt denote, respectively, the scattering and extinction coefficients) clearly 
increases the number of collisions of each biography, hence the total processing time. The interplay between this increase 
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in overhead and any possible reduction in the variance of the (weighted) estimator of the measurements then determines 
which technique is preferred in the implementation.

The example that drew our attention to this interplay involves solving 3D multi-layer problems with mismatched refrac-
tive indices at the layer interfaces. Specifically, throughout this paper we consider the problem of simulating the transport 
of light in multiple flat layers with varying indices of refraction. Without loss of generality, let there be m layers with the 
i-th layer given by

Vi := {(x, y, z) ∈R3 | x, y ∈R, z ∈ (zi, zi+1)}, (2)

where z j indicates the location of the j-th interface

I j := {(x, y, z j) ∈R3 | x, y ∈R}, (3)

for all j = 1, 2, . . . , m + 1. Under this configuration, the full medium V and its boundaries ∂V are respectively given by

V =
m+1⋃
j=1

I j ∪
(

m⋃
i=1

Vi,

)
, (4)

∂V =
m+1⋃
j=1

I j . (5)

Optically, we assume each layer Vi to have spatially invariant optical properties and each interface I j to be smooth 
dielectric. We provide precise mathematical descriptions for these configurations in §3.2.

Computational challenge Previous methods leveraging next-event estimation (e.g., our transport-constrained unbiased radi-
ance estimators (T-CURE) [2]) tally on individual collisions to lower the variance. Doing so, on the other hand, also increases 
the computational overhead because of the need to compute the estimator contributions from every collision. Nevertheless, 
this combination usually does increase the overall computational efficiency if one does not need to simulate the effect of 
both reflection and refraction at the layer interfaces. With the presence of refractive interfaces, however, the advantage of 
next-event estimation (over terminal) diminishes. This is because tallying while accounting for the Fresnel relations and 
refraction (according to Snell’s law) at the layer interfaces can lead to many volumetric and interfacial collisions, making the 
tallying process extremely expensive, if not impractical. It was this issue that sparked our interest in the use of a mixture 
of estimators, such as extended next-event and terminal, for estimating radiometric measurements in multiple layers with 
mismatching refractive interfaces.

2. Prior work

As far as the authors are aware, it was Booth and Pederson who first considered the possibility of using combinations 
of non-analog estimators, each of which is unbiased, for variance reduction in Monte Carlo transport simulations [4]. Their 
analysis relies on arguments that such estimators preserve the expected weight (tally) produced from a purely analog 
simulation. We have pursued a different path to the new hybrid estimators in our paper.

In what follows, we trace the development of a set of increasingly sophisticated collision-based estimators that form the 
basis for our new hybrid estimator (Section 4). We will use the book by Spanier and Gelbard [1] as our primary reference 
among others [5–9].

The general problem we consider is the estimation of radiometric measurements that capture responses of virtual detec-
tors. The first solution to this problem is the classical collision estimator that utilizes the probability measure induced by 
the analog random walk process where photons travel in straight lines before being absorbed or scattered by surrounding 
media. It has been shown (Theorem 3.5 in the book [1]) that the collision estimator is unbiased, meaning that its expected 
values equal the true radiometric measurements.

The collision estimator is one of three basic transport estimators with the other two being the terminal and the track-
length estimators (see Sections 2.5 and 2.6 of the book [1]). Closely related to the collision estimator, as discussed in 
Section 3.6 of the book [1], is the expected-value estimator which anticipates possible collisions in the regions along the 
direction of the photon prior to any actual collision. Expected-value estimators only produce tallies after a new direction 
is determined following a scattering event.1 On the other hand, given the formula for the single-scattering phase function, 
one can also utilize the probability density of scattering through any angle in calculating a tally. This leads to next-event 
estimators, including our T-CURE estimator [2], which are capable of significantly reducing the variance and increasing the 
figure of merit.

1 Using expected value estimators to define, e.g., flux at a point, would introduce a 1/s2 singularity with s being the distance from a point outside the 
detector to one within the detector (see Spanier and Gelbard’s book [1], pp. 107-110, especially Eq. (3.6.23)).
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Additionally, a path integral framework has been established in a few works in applied physics [1] and computer graph-
ics [10,11]. Under this framework, the radiometric measurements are formulated as integrals of full photon biographies, and 
the numerical estimation of these integrals can be done using Monte Carlo integration with importance sampling. In fact, 
all the aforementioned estimators can be treated as importance sampling methods under the path integral framework (with 
different biography-sampling strategies). In this paper, we base the derivation of our hybrid estimator upon this formulation.

Lastly, several techniques—which are largely orthogonal to ours—have been introduced to reduce the variance of Monte 
Carlo estimators for solving radiative transfer problems. For example, the DXTRAN estimator available in the MCNP code [12]
is used to increase the sampling in a spherical region that would otherwise be inadequately sampled (because the proba-
bility of scattering towards the region is very small). This method can introduce large weight fluctuations between particles 
colliding just before the sphere and particles colliding after crossing the sphere. This difficulty can be partly mitigated by 
extending the DXTRAN sphere to a set of nested DXTRAN spheres.

In what follows, we briefly revisit the path integral formulation in Section 3 and re-derive the collision and next-event 
estimators based on this formulation.

3. Overview and mathematical preliminaries

Radiative transport is the physical model that describes light propagation in scattering media ranging from human tissue 
to cosmic nebulae and galaxies. At the core of this formulation are the radiative transport equations involving three inde-
pendent spatial variables, two for the unit direction vector, and one for time (in the time-dependent case). We refer the 
reader to our prior work [13] for detailed discussions of these equations.

In this paper, we focus on media with no internal light sources. In this case, for a medium enclosed in V ⊆ R3 with 
boundary ∂V , the radiance field � produced by a monoenergetic light source inside the medium is governed by the integral 
radiative transfer equation (IRTE):

�(r,ω) =
s∂V∫
0

τ (r′, r)

⎡
⎢⎣μs(r′)

∫
S2

f p(r′,ω′,ω)�(r′,ω′)dω′

⎤
⎥⎦ds

+ τ (r∂V , r)φ(r∂V ,ω),

(6)

where

• μt is the total attenuation, or extinction, coefficient;
• μs is the scattering coefficient;
• f p is the single-scattering phase function;
• s∂V denotes the minimal distance between r and a point on the medium boundary ∂V via direction −ω.2 Namely, 

s∂V := inf{s | r − s ω ∈ ∂V};
• r′ := r − s ω, r∂V := r − s∂V ω, and τ (r′, r) denotes the transmittance between r′ and r given by a line integral over the 

segment r′ r:

τ (r′, r) = exp

⎛
⎜⎝−

∫
r′ r

μt(x)dx

⎞
⎟⎠ ; (7)

• φ denotes the incident radiance at the medium boundary and acts as the boundary condition of the system.

In discussing light transport in turbid media, the IRTE (6) is sometimes expressed in terms of transformed dependent 
variables:

�(P ) =
s∂V∫
0

∫
S2

K (P ′ → P )�(P ′)dω′ ds + S(P ), (8)

where P := (r, ω), P ′ := (r′, ω′) ∈ V ×S2, and

K (P ′ → P ) := μs(r′) f p(r′,ω′,ω) τ (r′, r), (9)

S(P ) := τ (r∂V , r)φ(r∂V ,ω). (10)

2 In case of an infinite medium, s∂V can sometimes be infinite, causing the second term on the right-hand side of Eq. (6) to vanish.
3
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Handling reflective/refractive interfaces Many real-world problems involve multiple media separated by interfaces interacting 
with light via reflection and refraction. In this case, light transport in each medium is governed by an IRTE (6), (8), and the 
system of equations is further coupled by a set of interface equations of the form

φ(r,ω) =
∫
S2

�i(r,ω′) f s(r,ω′,ω)dσ(ω′) + φe(r,ω), (11)

where �i(r, ω′) denotes the incident radiance from either side of the interface and equals �(r, −ω′) given by the corre-
sponding IRTE. Further, f s depicts the surface scattering profile, σ denotes the measure of projected solid angle, and φe is 
the (known) source term capturing light emitted at the medium interfaces.

Radiometric measurements In many applications, one is concerned with some radiometric measurement I given by the inner 
product between the interfacial radiance φ and some measurement function We (that usually specifies the physical dimen-
sions of a radiometric detector):

I = 〈We, φ〉 :=
∫
∂V

∫
S2

We(r,ω)φ(r,ω) dσ(ω)dr. (12)

For instance, to measure the radiance at some fixed location r0 ∈ V with direction ω0 ∈ S2, one can set We(r, ω) = δ(r −
r0) δ(ω − ω0) with δ being the Dirac delta function.

3.1. Path integral formulation

The measurement (12) can also be expressed as a pure integral that is usually termed the path integral [10,11]:

I =
∫
B

f (b̄)dμ(b̄), (13)

where:

• B is a probability measure space (sometimes termed the path space) that is the sample space of all possible photon 
biographies b̄.

• μ is a probability measure (sometimes termed the throughput measure) on B. For any photon biography b̄ =
(r0, r1, . . . , rK ), dμ(b̄) is given by

dμ(b̄) =
K∏

k=0

drk, (14)

where drk has area measure if rk ∈ ∂V and volume measure if rk ∈ V \ ∂V .
• f : B → R describes the contribution (aka. throughput) of any photon biography (aka. light transport path) b̄ to the 

radiometric detector. For any photon biography b̄ = (r0, . . . , rK ), let ωk denote the direction from rk to rk+1 (i.e., 
ωk = (rk+1 − rk)/‖rk+1 − rk‖) for k = 0, 1, . . . , K − 1. Then, the contribution f (b̄) has been demonstrated to equal the 
product of per-vertex terms vk and per-segment terms sk [11]

f (b̄) =
(

K∏
k=0

vk

)(
K∏

k=1

sk

)
. (15)

Specifically, the per-vertex contributions vk are given by

vk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φe(r0,ω0), k = 0,

We(rK ,ωK−1), k = K ,

f s(rk,ωk−1,ωk), 0 < k < K , rk ∈ ∂V,

μs(rk) f p(rk,ωk−1,ωk), 0 < k < K , rk ∈ V \ ∂V,

(16)

where φe and We describe the emission of the source and the response of the detector, respectively. The per-segment 
contributions sk equal

sk = τ̂ (rk−1, rk)
|〈n(rk−1), ωk−1〉| · |〈n(rk), ωk−1〉|

‖rk − rk−1‖2
, (17)

where τ̂ is the visibility-aware transmittance (which equals the transmittance τ between rk−1 and rk if the two points 
are mutually visible, and zero otherwise) and n denotes interface normal directions. Note that, for those rk−1 and rk
representing volumetric collisions, the corresponding inner product terms are simply set to one.
4
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3.2. Problem specification

As stated in §1, we consider in this paper the problem of simulating light transport in multiple flat layers with varying 
indices of refraction. The layers {Vi} and interfaces {I j} are defined in Eqs. (2), (3), respectively.

Optically, we assume each layer Vi to have spatially invariant extinction coefficient σ (i)
t , scattering coefficient σ (i)

s , phase 
function f (i)

p , and each interface I j to be smooth dielectric with the scattering function

f s(ω
′,ω) = Ft

δ(ω′ − ωt)

| cosω′| + (1 − Ft)
δ(ω′ − ωr)

| cosω′| , (18)

where ωt and ωr denote the reflected and refracted directions of ω, Ft denotes the Fresnel transmittance term, and cosω′
indicates the inner product between ω′ and the layer normal [0, 0, 1]. With this scattering profile, the interface equa-
tions (11) reduce to

φ(r,ω) = Ft �i(r,ωt) + (1 − Ft)�i(r,ωr), (19)

for all r ∈ ∂V and ω ∈S2.

3.3. Monte Carlo solutions

Under our problem specification, the radiometric measurements (12), (13) have no closed-form solution. Instead, we rely 
on Monte Carlo integration (with importance sampling) to estimate them. Specifically, assume p to be a probability density 
function over the path space B such that p(b̄) > 0 whenever f (b̄) > 0. Let b̄1, . . . , ̄bN ∈ B be sample biographies drawn 
independently from p. Then, it holds that

1

N

N∑
n=1

f (b̄n)

p(b̄n)

N→∞−−−→
∫
B

f (b̄)dμ(b̄) = I. (20)

In other words, the left-hand side of Eq. (20) is a theoretically unbiased estimator of I .
Previously, several types of transport estimators have been developed. A classical terminal estimator, which has been 

implemented by many software libraries such as MCML [14], randomly constructs photon biographies by directly simulating 
the underlying analog stochastic process. A next-event estimator, in contrast, tallies at individual collisions to reduce estima-
tion variance. Both estimators can be derived in multiple mathematically equivalent ways. We now provide brief derivations 
for both of them using the path integral framework (13), (20).

Besides terminal and next-event, collision and track-length estimators have also been introduced to estimate volumetric 
properties such as collision density [1]. As we are concerned with radiometric measurements provided by detectors located 
on layer interfaces (as expressed in Eq. (12)), we will focus on the terminal and next-event estimators (as well as their 
extensions) in the rest of this paper.

Terminal estimator This estimator works by directly simulating the standard analog procedure, a Markov process. Specifi-
cally, a photon starts with a location r0 ∈ ∂V on the source with an initial direction ω0. Then, the photon interacts with 
the surrounding media and interfaces by (i) traveling straight for a random free-flight distance τi ∈ R+; (ii) colliding with 
the medium or an interface at ri+1 = ri + τi ωi ; and (iii) switching to a random new direction ωi+1 based on the phase 
function of the medium or the scattering profile of the interface. This process is repeated for i = 0, 1, . . . until reaching the 
detector at some rK . In this way, the probability density for constructing an entire photon biography b̄ = (r0, r1, . . . , rK ) is

pterminal(b̄) = p(r0)

K−1∏
k=0

p(rk+1 | rk), (21)

where p(rk+1 | rk) captures the probability for the photon to take direction ωk ∈ S2 and free-flight distance τk = ‖rk+1 −rk‖
at rk . Given Eq. (21), the terminal estimator can be obtained via

f (b̄)

pterminal(b̄)
= (

∏K
k=0 vk)(

∏K
k=1 sk)

pterminal((r0, . . . , rK ))
= c0

p(r0)

⎛
⎜⎜⎝ ∏

1≤k<K ,
rK ∈V\∂V

αk

⎞
⎟⎟⎠ We(rK ,ωK−1), (22)

where the vertex vk and segment sk contributions are respectively given by Eqs. (16), (17), αk := μ
(k)
s /μ

(k)
t is the single-

scattering albedo at rk , and c0 is a normalization constant. Please refer to Appendix A for a detailed derivation.
5
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Next-event estimation Although conceptually simple, the terminal estimator converges slowly when the chance for a photon 
to randomly hit the radiometric detector is low. This happens when the detector is placed distantly from the source or 
has small surface area. To address this problem, a new family of methods, including our T-CURE estimator [2], has been 
introduced. These estimators leverage a technique called next-event estimation. Unlike the terminal estimator, next-event 
estimation tallies at every vertex of a photon biography and usually leads to faster convergence.

When applied to the multi-layer problem with dielectric interfaces, since the interfacial collisions are “specular” (i.e., 
involving Dirac delta functions), tallying occurs at volumetric collisions in the interior of layers adjacent to the detector 
(which is assumed to be located on an interface). In this way, a photon biography b̄ = (r0, . . . , rK ) with rK−1 ∈ V \ ∂V is 
constructed by having the prefix b̄

′ := (r0, . . . , rK−1) generated the same way as the terminal estimator and the last vertex 
rK sampled from the surface of the detector uniformly, leading to the probability density:

pNE(b̄) = pterminal(b̄
′
) p(rK ), (23)

where pterminal(b̄
′
) follows Eq. (22), and p(rK ) = 1/|D| with |D| indicating the surface area of the detector. Since f (b̄) =

f (b̄
′
) sK v K where sK and v K are respectively the contributions of the K -th segment and vertex given by Eqs. (16), (17), we 

have

f (b̄)

pNE(b̄)
= f (b̄

′
)

pterminal(b̄
′
)

sK v K

p(rK )

= f (b̄
′
)

pterminal(b̄
′
)
|D| We(rK ,ωK−1) τ̂ (rK−1, rK )

cosωK−1

‖rK − rK−1‖2
.

(24)

In practice, during one random walk process, a next-event estimator effectively constructs multiple (correlated) photon 
biographies. In other words, every time the estimator tallies using Eq. (24), an effective photon biography is generated.

4. Our method

4.1. Hybrid estimators

Our method is built upon a general framework that allows multiple estimators to be used jointly to estimate radio-
metric measurements (12). Specifically, assume that the path space B can be partitioned into L disjoint sub-domains 
B1, B2, . . . , BL , yielding

I =
L∑

l=1

∫

l

f (b̄)dμ(b̄). (25)

Further, for each l, let pk be a biography-constructing probability density satisfying that pl(b̄) > 0 whenever f (b̄) > 0 for all 
b̄ ∈ Bl . Then, it is easy to verify that

〈I〉hybrid :=
L∑

l=1

f (b̄l)χ [b̄l ∈Bl]
pl(b̄l)

, (26)

is an unbiased estimator of I where b̄l is a biography drawn from pl and χ denotes the indicator function (which equals 
one when the specified condition is satisfied and zero otherwise). Since 〈I〉hybrid leverages multiple estimators, we term it 
an hybrid estimator of I .

Remark Under the framework presented in Eq. (26), each component estimator only needs to handle one class of biogra-
phies (i.e., those from Bl for each l). Thus, it is all right for the l-th estimator to neglect (i.e., never sample) a biography b̄
with f (b̄) > 0 as long as b̄ /∈ Bl . This additional flexibility enables new possibilities for the design of efficient estimators, 
which we will demonstrate in the rest of this paper.

Our hybrid estimator In what follows, we introduce a new estimator to solve the problem of light transport in index-
mismatching layers following the hybrid framework depicted in Eq. (26). Specifically, we set L = 2:

〈I〉ours = f (b̄1)χ [b̄1 ∈B1]
p1(b̄1)

+ f (b̄2)χ [b̄2 ∈B2]
p2(b̄2)

, (27)

and use p1 given by our new next-event-like process capable of crossing layer boundaries (§4.2) and p2 by the standard 
terminal estimator. Our new estimator is unbiased and much more efficient than traditional terminal and next-event esti-
mators, which will be demonstrated empirically in §5.

In the rest of this section, we provide a detailed description of our new hybrid estimator.
6
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Fig. 1. Extended next-event estimations: after a photon enters a collision at r, there exist infinitely many ways for it to reach the detector via only 
interfacial reflections and refractions. For example, in (a), the photon (after leaving r) undergoes one refraction before reaching the detector; in (b), the 
photon is reflected twice and then refracted; in (c), the connection from r to the detector involves four reflections and one refraction.

4.2. Extended next-event estimation

The core of our hybrid estimator is an extended next-event estimation technique capable of crossing multiple inter-
face boundaries. Similar to traditional next-event estimation, we would like to directly connect to the detector from every 
volumetric collision.3 To do this efficiently under the multi-layer configuration depicted in §3.2, we need to allow the con-
nection to contain surface interactions (i.e., reflection and refraction), as demonstrated in Fig. 1. Since a connection can 
involve arbitrarily many such interactions, there exist infinitely many valid connections.

To make our extended next-event estimation tractable, we consider next-event connections with refraction only (e.g., 
Fig. 1-a) while leaving all other possibilities (e.g., Fig. 1-bc) to be handled with a standard terminal estimator using the 
hybrid framework (§4.1).

Path-space partitioning Precisely, we partition the path space B into two subdomains B1 and B2 as follows. Let b̄ =
(r0, r1, . . . , rK ) be an arbitrary photon biography (with r0, rK ∈ ∂V respectively located on the source and the detector). 
Then, b̄ ∈B1 if and only if there exists some k ∈ {1, 2, . . . , K − 1} satisfying: (i) rk corresponds to a volumetric collision; and 
(ii) rk+1, rk+2, . . . , rK−1 all correspond to interfacial refraction.

Based on this partitioning, we use: (i) an extended next-event estimator to efficiently handle photon biographies from 
B1; and (ii) a standard terminal estimator for B2 = B \B1.

Extended next-event connection Given an internal collision at location r ∈ V \∂V , we aim to draw ω ∈S2 such that extending 
a light ray with origin r and direction ω (while refracting through layer boundaries) can eventually hit the detector at 
D ⊆ ∂V . Notice that with smooth dielectric interfaces, the extension of a light ray is deterministic given r and ω.

Similar to traditional next-event estimation methods, we draw a point rd on the detector D from some predetermined 
probability density p(rd) and seek ω such that the extended light ray indeed intersects the detector at rd. Notice that, 
due to the presence of refractive interfaces, setting ω = (rd − r)/‖rd − r‖ does not work in general. As shown in Fig. 2-a, 
it is easy to verify that the desired direction ω should lie within the plane determined by r, rd, and the normal n of all 
layer boundaries (recall that we assume all layers to be parallel flat slabs). Then, as illustrated in Fig. 2-b, the search for 
ω amounts to finding a proper angle θ ∈ [0, π/2) such that, within the layer boundary containing D, the distance F (θ)

between the projection r′ of r and the intersection of the extended light ray equals ‖r ′ − rd‖. Specifically, F is given by

F (θ) =
P∑

ρ=0

hρ tan θρ, (28)

where P denotes the number of refractive interfaces between r and the detector, θρ is the angle between the normal to the 
light ray after ρ refractions (so θ0 = θ ), and hρ denotes the projected distance between the ρ-th and the (ρ + 1)-th vertices 
on the extended light ray.

According to Eq. (28), we know that F increases monotonically between 0 and ∞ when θ varies from 0 to π/2. Thus, 
there exists exactly one θ satisfying F (θ) = ‖r′ − rd‖ for any rd ∈ D. In practice, we further exploit the monotonicity of F
by calculating θ using the bisection method.

Change of variable At each internal scattering location r, we draw ω for our extended next-event estimation by sampling 
rd ∈ D and computing θ = F −1(‖r′ − rd‖) (which in turn determines ω). To properly calculate the probability density for 
generating a photon biography with our extended next-event connection, we need to write down the probability p as a 
function of ω (instead of rd). Let F be the mapping from ω ∈ S2 to rd ∈ D. Then, the probability density of ω based on 
that of rd involves evaluating the determinant of the Jacobian J F −1 of the inverse mapping F −1 at ω:

3 In general, it is also desirable to connect from every interfacial scattering. This, however, is unnecessary due to our smooth surface scattering pro-
files (18).
7
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Fig. 2. Extended next-event connection: (a) Provided an internal location r and an interfacial location rd ∈ D, the direction ω that allows the extension of 
a light ray originated at (r, ω) to go through rd always lies within the plane given by r, rd, and n. (b) The search of ω amounts to finding a proper angle 
θ with F (θ) = ‖r′ − rd‖.

p(ω) = p(rd)
∣∣det

(
J F −1(ω)

)∣∣ . (29)

Specifically, it can be shown that

p(ω) = p(rd)
sin θ

F (θ)F ′(θ)
, (30)

where F ′ denotes the first derivative of F with respect to θ . See Appendix B for more details on the derivation.

Our next-event estimator We now provide the exact mathematical form of our next-event estimator, the key component of 
our hybrid estimator (27). To this end, we need to write down the probability density p1 for photon biographies b̄ ∈ B1
constructed using the aforementioned extended next-event connections.

Given a photon biography b̄ = (r0, r1, . . . , rK ) with r0 ∈ ∂V located on the source and rK ∈ D ⊆ ∂V on the detector, 
assume without loss of generality that the extended next-event connection is performed on r i ∈ V \ ∂V with 0 < i < K . 
It follows that, for all i < i′ < K , ri′ corresponds to a refraction on a layer interface. Then, it holds that the probability 
for drawing b̄ equals the product of probabilities for drawing its prefix (r0, . . . , ri) and the extended next-event suffix 
(ri+1, . . . , rK ) given ri . That is,

p1(b̄) = p((r0, . . . , ri)) p((ri+1, . . . , rK ) | ri). (31)

Additionally, the measurement contribution of b̄ given by Eq. (15) can be decomposed as

f (b̄) =
[(

i−1∏
k=0

vk

)(
i∏

k=1

sk

)]
︸ ︷︷ ︸
Contribution of (r0, . . . , ri)

⎡
⎣(

K∏
k=i

vk

)⎛
⎝ K∏

k=i+1

sk

⎞
⎠
⎤
⎦

︸ ︷︷ ︸
Contribution of (ri+1, . . . , rK )

. (32)

Then, the tally of our extended next-event estimator equals

f (b̄)

p1(b̄)
= (

∏i−1
k=0 vk)(

∏i
k=1 sk)

p((r0, . . . , ri))

(
∏K

k=i vk)(
∏K

k=i+1 sk)

p((ri+1, . . . , rK ) | ri)
, (33)

where the first factor on the RHS only depends on (r0, . . . , ri) and is given by Eq. (22).
We now focus on expressing the probability for building (r i+1, . . . , rK ) using our extended next-event connection at r i . 

Based on our change of variable result (30), this probability can be expressed as

p((ri+1, . . . , rK ) | ri) = p(rK )
sin θi

F (θi)F ′(θi)
, (34)

where θi is the angle between the layer normal n = [0, 0, 1] and ωi . It follows that

(
∏K

k=i vk)(
∏K

k=i+1 sk)

p((ri+1, . . . , rK ) | ri)
= We(rK ,ωK−1) f p(ri,ωi−1,ωi)

F (θi)F ′(θi)

p(rK ) sin θi⎛
⎝ K−1∏

k=i+1

τ (rk−1, rk) F (k)
t

⎞
⎠τ (rK−1, rK ),

(35)

where

τ (rk−1, rk) = exp(−μ
(k−1)
t ‖rk − rk−1‖), (36)
8
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Fig. 3. We use a layered configuration with layer optical properties modeled according to prior works [15–17].

captures the transmittance between rk−1 and rk for all k, and F (k)
t denotes the Fresnel transmission at rk .

In practice, we draw r K uniformly on the detector for our extended next-event connection, yielding p(r K ) ≡ 1/|D| with 
|D| being the detector’s surface area. Then, the tally function of our extended next-event estimator can be expressed as:

f (b̄)

p1(b̄)
= (

∏K
k=0 vk)(

∏K
k=1 sk)

p((r0, . . . , ri)) p((ri+1, . . . , rK ) | ri)

= c0

p(r0)

⎛
⎜⎜⎝ ∏

1≤k≤i,
rK ∈V\∂V

αk

⎞
⎟⎟⎠ We(rK ,ωK−1) f p(ri,ωi−1,ωi)

|D| F (θi)F ′(θi)

sin θi

⎛
⎝ K−1∏

k=i+1

τ (rk−1, rk) F (k)
t

⎞
⎠τ (rK−1, rK ),

(37)

for all b̄ ∈ 
1.

5. Experimental results

We implemented our hybrid estimator in C++ with multi-threading enabled using OpenMP. We demonstrate the effec-
tiveness of our technique empirically via a few numerical experiments.

5.1. A two-layer problem

We test our technique using a layered configuration modeled after human tissue with optical properties given by prior 
works [15–17]. As shown in Fig. 3, our configuration involves two homogeneous layers and varying refractive indices sepa-
rated by dielectric interfaces. Additionally, a pair of small disc source and detector (with 0.05 mm cross-sectional diameters 
and fully open apertures) are placed 2 mm away from each other.

Results Fig. 4 compares the efficiency of the terminal and our estimators measured using figure of merit (FOM) given by 
Eq. (1). In this experiment, we estimate the flux received by the detector and execute both estimators multiple times (in 5, 
50, 500, and 5000 seconds, respectively). As our method runs more slowly per random walk, we use fewer samples to keep 
the total computation times similar. Still, our hybrid estimator outperforms the terminal estimator significantly by offering 
an FOM that is over an order of magnitude larger.

Fig. 5 further visualizes the received flux in a directionally resolved fashion (i.e., intensity) where each direction from 
the lower hemisphere is projected down to a unit disc. These results are obtained using the same equal-time setting as 
Fig. 4 and demonstrate the capability of our hybrid method to produce significantly cleaner estimations with lower rooted 
mean-square error (RMSE) with respect to a reference solution computed using 10× samples as (e2).

Additionally, we show per-component visualizations of our estimated result in Fig. 6. The full estimation is shown in 
Fig. 6-a, which is identical to Fig. 5-d2. Recall that, as expressed in Eq. (27) in §4, our hybrid estimator partitions the 
path space B into two disjoint subsets B1 and B2. Fig. 6-b visualizes the component estimated with our extended next-
event estimation using photon biographies from B1. Additionally, Fig. 6-c shows the estimation obtained with the terminal 
estimator using photon biographies from B2.
9
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Fig. 4. Figure of merit (FOM) of the terminal and our hybrid estimators applied to the two-layer problem (to compute the flux received by the detector). 
When computing the FOM values using Eq. (1), the σ 2 term is approximated using sample variance. Under this metric, the efficiency of our technique is 
over an order of magnitude greater than that of the terminal estimator.

Fig. 5. Intensity received by the detector in the two-layer problem from varying directions estimated with the terminal estimator (a1–e1) and our ap-
proach (a2–e2). Both estimators run in roughly the same time for each column. Our hybrid estimator is able to produce much cleaner results thanks to our 
extended next-event estimation depicted in §4.2.

Fig. 6. Per-component visualization: (a) Estimated intensity (same as Figure 5-d2); (b) The component handled by our extended next-event estimator for 
biographies from B1; (c) The other component handled using terminal for biographies from B2.

5.2. Beyond two layers

Our technique is capable of handling media with arbitrary numbers of layers. To demonstrate this, we conduct another 
experiment using a configuration with four layers with alternating properties (see Fig. 7). We visualize the estimated in-
tensity in Fig. 8 where our technique outperforms the terminal estimator by producing cleaner estimates with much lower 
RMSE (as shown above each intensity visualization result).
10
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Fig. 7. We use a synthetic four-layer configuration to demonstrate the capability of our technique for handling media with more than two layers.

Fig. 8. Intensity received by the detector in the four-layer problem from varying directions estimated with the terminal estimator (a1–e1) and our ap-
proach (a2–e2) at equal time per column.

6. Summary and conclusions

Conclusion In this paper, we have introduced a new family of hybrid estimators that combine the benefits of two or more 
unbiased estimators in order to increase the computational efficiency.

The prototypical problem that we study here involves a multilayer system of radiative transfer equations (6) that are 
coupled by a set of interface conditions (11). In estimating radiometric measurements (12) in such a system, terminal 
estimations can lead to large variances when the biographies rarely traverse the path from the source to detector. When 
the layers’ refractive indices are index-matched, we showed in [13] that use of a transport-constrained unbiased radiance 
estimator (T-CURE) to estimate reflectance is several orders of magnitude more accurate than the terminal estimate of 
reflectance. This improvement is achieved because, in the absence of index-mismatched interfaces between each collision 
point and the detector, T-CURE can make use of the expected contribution to reflectance from every collision of each photon 
biography. However, when there are index-mismatched interfaces between the collision location and the detector, the T-
CURE computation rapidly becomes intractable due to the large number of both reflections and refractions that can arise.

In §3.2, we describe a multilayer problem (2), (3) where each layer has constant optical properties and each interface 
is assumed to be smooth dielectric (18). §4.2 discusses our new extended next-event estimation technique that is capable 
of crossing multiple interface boundaries. This is accomplished by handling only refractive interface crossings with the 
extended next-event estimator, and all others by standard terminal estimation.

In §5, we demonstrate the gains in computational efficiency obtained by the hybrid estimator.

Future work Our extended next-event estimation (§4.2) relies on the assumption that the layer interfaces are planar and 
parallel to each other. Although this is the case under the (idealized) layered configuration, generalizing to more general 
geometries is an interesting future topic. It is also possible to consider a number of other, potentially finer, partitions 
of the phase space, each of which would give rise to a new, different hybrid estimator. This is because the partitioning 
establishes how many reflections and refractions are permitted prior to switching to the analog estimator. An interesting 
optimization problem arises from such considerations because the finer the partition, the more costly is the computation, 
11
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but the additional information garnered from allowing more reflections and refractions, the smaller (in general) is the 
statistical uncertainty in the estimate.
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Appendix A. Derivation of the terminal estimator

The construction of a photon biography b̄ = (r0, . . . , rK ) using the standard analog procedure works as follows. Starting 
with an initial location r0 on the source S , the following Markov process is performed for k = 0, 1, . . . , K − 1 to draw the 
remaining vertices.

1. Given rk , draw a direction ωk based on the source function φe (when k = 0), the interfacial scattering profile f s (when 
k > 0 and rk ∈ ∂V), or the phase function f p (when k > 0 and rk ∈ V \ ∂V).

2. Sample a distance sk from an exponential distribution with the parameter μ(k)
t that equals the extinction coefficient of 

the layer containing (rk, ωk).
3. If the line segment connecting ωk and rk + sk ωk intersects any layer boundary (i.e., {rk + s ωk | 0 < s < sk} ∩ ∂V �= ∅), 

update sk by setting sk ← inf{s | s > 0 and rk + s ωk ∈ ∂V}.
4. Set rk+1 ← rk + sk ωk .

Since rk+1 only depends on rk and rk−1 (when k > 0), the construction of photon biographies is a second-order Markov 
process. Precisely, p(rk+1 | rk) in Eq. (21) equals

p(rk+1 | rk) =
⎧⎨
⎩

p(ωk) exp(−μ
(k)
t sk)

cosωk
‖rk+1−rk‖2 , (rk+1 ∈ ∂V)

p(ωk)μ
(k)
t exp(−μ

(k)
t sk)

1
‖rk+1−rk‖2 , (rk+1 ∈ V \ ∂V)

(A.1)

where cosωk := |〈n, ωk〉| with n = [0, 0, 1] being the layer normal, μ(k)
t is the extinction coefficient of the layer given by rk

and ωk , and the last factors account for the change from dωk and dωkdsk to drk+1, respectively. In Eq. (A.1), p(ωk) captures 
the probability for drawing ωk at rk (Step 1 above):

p(ωk) =

⎧⎪⎨
⎪⎩

c−1
0 φe(r0,ω0) cosω0, (k = 0)

f s(rk,ωk−1,ωk) cosωk, (k > 0 and rk ∈ ∂V)

f p(rk,ωk−1,ωk), (k > 0 and rk ∈ V \ ∂V)

(A.2)

with c0 ∈R+ being a normalization factor.
Lastly, Eq. (22) can be obtained according to Eqs. (21), (A.1), (A.2).

Appendix B. Change of variable

In what follows, we derive the ratio between the solid angle measure (dσ ) and the area measure (dA) for layered 
radiative transfer problems.

Problem specification As shown in Fig. B.9, consider a heterogeneous medium in 3D with L homogeneous layers with each 
layer i being an infinitely large slab with thickness hi and refractive index ni . Note that the interfaces between adjacent 
layers are all planar and parallel to each other.

Consider a path (P 0, . . . , P L) with P 0 contained in Layer 1 and P i being on the ‘top’ interface of Layer i (where 1 ≤ i ≤
L). Here we assume the path satisfies Snell’s law. Our goal is to find the ratio between the differential solid angle dσ(ω)

around the ray (P 0, ω) with ω := (P 1 − P 0)/‖P 1 − P 0‖ and the differential area dA(P L) around P L on the ‘top’ interface 
of Layer L.
12
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Fig. B.9. Problem specification. Given a path (in green) connecting P 0 and P L across multiple layers with varying indices of refraction (IOR), our goal is 
to derive the ratio between dA(P L) (under the area measure) and dσ(ω) (under the solid angle measure). (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Fig. B.10. Change of variable: dP L/dθ1 and dP L/dφ are two vectors within the tangent plane at P L . The cross product dP L/dθ1 × dP L/dφ is another vector 
orthogonal to both dP L/dθ1 and dP L/dφ. The length of this vector product captures the area of the infinitesimal region shown in green.

Our derivation Assume without loss of generality that

• P 0 locates at the origin (0, 0, 0);
• The ‘top’ interface of Layer i (for all 1 ≤ i ≤ L) is a plane perpendicular to the Z-axis with z = ∑i

j=1 h j .

Given ω = (sin θ1 cosφ, sin θ1 sin φ, cos θ1), the whole path (P 0, . . . , P L) can be uniquely determined by tracing a ray 
starting from (P 0, ω) and computing refracted directions via Snell’s law. Thus, P 1, . . . , P L can be considered as (vector-
valued) functions of θ1 and φ. In particular, it is easy to verify that

P i = P i−1 + (
cosφ tan θihi, sinφ tan θihi, hi

)
, (B.1)

where θi denotes the angle between (P i−1 − P i) and the Z-axis (see Fig. B.9). Notice that, in our configuration, φ is preserved 
during refraction and remains identical for all i in Eq. (B.1).

By expanding Eq. (B.1), we have

P i =
i∑

j=1

(
cosφ tan θ jh j, sinφ tan θ jh j, h j

)
. (B.2)

Then, it holds that (see Chapter 3 of the book by Gurtin [18])

dA(P L)

dθ1 dφ
=

∥∥∥∥dP L

dθ1
× dP L

dφ

∥∥∥∥ . (B.3)

In Eq. (B.3), dP L/dθ1 and dP L/dφ are both 3-vectors, and the magnitude of their cross product indicates the size of an 
infinitesimal area around P L (as illustrated in Fig. B.10). Previously, a similar approach has been used to compute the 
change-of-measure ratio for a two-layer problem in computer graphics [19].

We now derive a closed-form expression for the RHS of Eq. (B.3). Let

F (θ1) :=
L∑

i=1

tan θihi . (B.4)

Then, given Eq. (B.2) and Eq. (B.4), we have
13
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P L =
(

F (θ1) cosφ, F (θ1) sin φ,

L∑
i=1

hi

)
. (B.5)

As hi is constant for all i, it holds that

dP L

dθ1
= (F ′(θ1) cos φ, F ′(θ1) sinφ, 0),

dP L

dφ
= (−F (θ1) sin φ, F (θ1) cosφ, 0),

where F ′ := dF/dθ1. It follows that

dP L

dθ1
× dP L

dφ
= (

0, 0, cos2 φ F (θ1)F ′(θ1) + sin2 φ F (θ1)F ′(θ1)
)

= (
0, 0, F (θ1)F ′(θ1)

)
.

Therefore,

dA(P L)

dθ1 dφ
=

∥∥∥∥dP L

dθ1
× dP L

dφ

∥∥∥∥ = F (θ1)F ′(θ1). (B.6)

Since dσ(ω) = sin θ1dθ1dφ, we have

dA(P L)

dσ(ω)
= F (θ1)F ′(θ1)

sin θ1
. (B.7)

At this point, the only remaining task is to obtain F ′ (by differentiating F ):

F ′(θ1) = d

dθ1

L∑
i=1

tan θihi =
L∑

i=1

(
d

dθ1
tan θihi

)
=

L∑
i=1

hi

cos2 θi

dθi

dθ1
. (B.8)

According to Snell’s law, ni sin θi = ni−1 sin θi−1 for all 1 < i ≤ L. It follows that

sin θi = ni−1

ni
sin θi−1 = ni−1

ni

ni−2

ni−1
sin θi−2 = . . . =

⎛
⎝ i−1∏

j=1

n j

n j+1

⎞
⎠ sin θ1 = ηi sin θ1,

where ηi := n1/ni . Then, θi = arcsin(ηi sin θ1) and

dθi

dθ1
= ηi cos θ1√

1 − η2 sin2 θ1

= ηi
cos θ1

cos θi
. (B.9)

Combining Eq. (B.8) and Eq. (B.9) yields

F ′(θ1) =
L∑

i=1

ηihi
cos θ1

cos3 θi
. (B.10)

We now derive an alternative form of Eq. (B.7) that directly depends on angles (θi ) and refractive indices (ni ) illustrated 
in Fig. B.9. Let Di := ‖P i − P i−1‖. Then, it holds that

F (θ1)

sin θ1
=

L∑
i=1

tan θihi

sin θ1
=

L∑
i=1

sin θi

sin θ1

hi

cos θi
=

L∑
i=1

ηi Di, (B.11)

and

F ′(θ1) = 1

cos θL
(cos θL F ′(θ1))

= 1

cos θL

L∑
i=1

ηi
hi

cos θi

cos θ1 cos θL

cos θ2
i

= 1

cos θL

L∑
ηi Di

cos θ1 cos θL

cos θ2
.

(B.12)
i=1 i
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Due to Eqs. (B.7), (B.11), (B.12), we have

dA(P L)

dσ(ω)
= F (θ1)F ′(θ1)

sin θ1
= 1

cos θL

(
L∑

i=1

ηi Di

)(
L∑

i=1

ηi Di
cos θ1 cos θL

cos θ2
i

)
. (B.13)

B.1. Special cases

Single layer When there is only one layer (i.e., L = 1), since η1 := n1/n1 ≡ 1, Eq. (B.13) reduces to

dA(P 1)

dσ(ω)
= 1

cos θ1
D1 D1 = D2

1

cos θ1
, (B.14)

matching the standard ratio between the measures of area and solid angle.

Double layer When L = 2, Eq. (B.13) reduces to

dA(P 1)

dσ(ω)
= 1

cos θ2
(D1 + η2 D2)

(
cos θ2

cos θ1
D1 + cos θ1

cos θ2
η2 D2

)
. (B.15)

This equation was introduced previously by Walter et al. [19] (see Eq. (18) in their paper).
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