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Fig. 1. Equal-time (20 minutes) comparison between MEMLT, MMLT, RJMLT, H2MC and two variants of our methods. The scene presents complex glossy and
specular interreflections with difficult visibilities. The reference (Ref.) is rendered by BDPT in roughly a day. MEMLT suffers from correlated noise in the glass
bottle region due to insufficient local exploration. MMLT and RJMLT both have severe noise because they sometimes get trapped in regions with hard-to-find
features using Kelemen-style isotropic mutations. H2MC is more efficient with the help of anisotropic Gaussian mutations, but the computational overhead
from Hessian computations and dense matrix operations results in a low sample budget and insufficient exploration. Our Langevin Monte Carlo methods
efficiently address these challenges by exploiting first-order gradient information to robustly balance the tradeoff between adaptation and cost.

We introduce a suite of Langevin Monte Carlo algorithms for efficient pho-
torealistic rendering of scenes with complex light transport effects, such
as caustics, interreflections, and occlusions. Our algorithms operate in pri-
mary sample space, and use the Metropolis-adjusted Langevin algorithm
(MALA) to generate new samples. Drawing inspiration from state-of-the-art
stochastic gradient descent procedures, we combine MALA with adaptive
preconditioning and momentum schemes that re-use previously-computed
first-order gradients, either in an online or in a cache-driven fashion. This
combination allows MALA to adapt to the local geometry of the primary
sample space, without the computational overhead associated with previ-
ous Hessian-based adaptation algorithms. We use the theory of controlled
Markov chainMonte Carlo to ensure that these combinations remain ergodic,
and are therefore suitable for unbiased Monte Carlo rendering. Through
extensive experiments, we show that our algorithms, MALA with online and
cache-driven adaptation, can successfully handle complex light transport in
a large variety of scenes, leading to improved performance (on average more
than 3× variance reduction at equal time, and 7× for motion blur) compared
to state-of-the-art Markov chain Monte Carlo rendering algorithms.
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1 INTRODUCTION
The development of general-purpose and efficient global illumina-
tion algorithms is one of the foundational problems in computer
graphics. Physics-based Monte Carlo rendering algorithms [Dutre
et al. 2006; Pharr et al. 2016] can accurately simulate complicated
light transport effects such as caustics, strong interreflections, sub-
surface scattering, and motion blur. They achieve this by aggre-
gating intensity contributions from a large number of randomly
generated light paths, representing the different ways in which light
can propagate through the scene that is being simulated. As the
complexity of the underlying transport effects increases, retaining
efficiency requires using Markov chain Monte Carlo (MCMC) tech-
niques [Veach and Guibas 1997]: unlike traditional Monte Carlo
algorithms, which generate independent paths through local im-
portance sampling, MCMC algorithms use Markov chains to create
statistically-correlated paths. This allows them to efficiently perform
both a global exploration of the space of possible paths, searching
for clusters of paths with high contributions to the image, and a
local exploration of such newly discovered clusters.
The success of MCMC algorithms depends critically on the de-

sign of proposal distributions for producing new path samples given
previously sampled ones. Whereas so-called path space MCMC ren-
dering algorithms directly modify the path within the scene, primary
sample space algorithms [Kelemen et al. 2002] modify the random
numbers provided as input to a black-box path tracing algorithm.
Operating in the mathematically-tractable space of real random
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numbers provides great flexibility for designing proposal distribu-
tions, and allows incorporating general-purpose proposals that have
found success in other application areas of MCMC inference. This
includes state-of-the-art gradient-based proposal distributions such
as Langevin Monte Carlo (LMC) [Roberts and Tweedie 1996] and
Hamiltonian Monte Carlo (HMC) [Duane et al. 1987]: essentially,
these work by performing one (LMC) or multiple (HMC) steps of a
noisy gradient ascent procedure, that guides the sampling process
towards parts of the primary sample space corresponding to local
maxima of the path contribution function.
The use of gradient-based MCMC techniques for physics-based

rendering has been hindered by two main factors: First, generat-
ing path samples requires the ability to differentiate complicated
path-tracing algorithms, corresponding to sequences of reflection,
transmission, and volume scattering events. Second, producing high-
quality samples requires additional expensive computation, such as
computing, factorizing, and inverting the Hessian matrix of the path
contribution function for each new path sample [Li et al. 2015]. Anal-
ogous to the use of the Hessian in Newton’s method, this helps the
gradient ascent procedure underlying the sampling process adapt
to the local geometry of the primary sampling space.
The recent proliferation of rendering engines that support end-

to-end differentiation [Anderson et al. 2017; Che et al. 2018; Li et al.
2018; Nimier-David et al. 2019; Zhang et al. 2019] helps overcome
the first of these two factors, and motivates us to revisit the use of
gradient-based MCMC for physics-based rendering. Our focus is
on developing proposal distributions based on LMC, coupled with
adaptation mechanisms to improve the exploration of the primary
sampling space. To make these LMC with adaptation processes
efficient enough for rendering, we make the following contributions:
• Inspired by state-of-the-art stochastic gradient descent (SGD)
algorithms [Kingma and Ba 2014], we propose adaptation
mechanisms that introduce minimal computational overhead
compared to standard LMC. These include a Hessian approx-
imation and a momentum vector that can be computed by
performing only scalar operations on first-order gradients,
sidestepping the need for expensive second-order differentia-
tion and matrix operations.
• We combine these adaptationmechanismswith a new caching
scheme, that stores previously computed gradients, and uses
them to guide the sampling process in a way that facilitates
both local and global exploration.
• We use theoretical results on controlled MCMC processes [An-
drieu and Thoms 2008], to ensure the ergodicity and correct-
ness of these combinations.

These contributions result in three MCMC rendering algorithms
that significantly outperform state-of-the-art techniques, resulting
in an average MSE improvement of 3× on equal-time comparisons
across a large variety of challenging scenes, and 7× for scenes with
motion blur. We make our implementation publicly-available [Luan
et al. 2020], to facilitate reproducibility and follow-up research.

2 RELATED WORK
Gradient-based and controlled Markov chain Monte Carlo.Markov

chain Monte Carlo (MCMC) refers to a large class of techniques that

allow sampling from arbitrary distributions (known only up to scale)
to perform various statistical inference tasks (for example, comput-
ing expectations) [Brooks et al. 2011]. Perhaps the most famous
among these techniques is the Metropolis-Hastings algorithm [Hast-
ings 1970; Metropolis et al. 1953], which uses an auxiliary proposal
distribution to create a Markov chain that converges to the tar-
get distribution. State-of-the-art techniques for designing proposal
distributions include Hamiltonian Monte Carlo (HMC) [Betancourt
2017; Duane et al. 1987; Neal et al. 2011] and Langevin Monte Carlo
(LMC) [Roberts and Tweedie 1996], which generate proposals by
simulating Hamiltonian and Langevin dynamics, respectively.
Both HMC and LMC use gradients of the target distribution, to

steer the Markov chain towards places where the target distribution
takes large values. Their similarity to gradient-descent optimization
algorithms such as Adagrad [Duchi et al. 2011] and Adam [Kingma
and Ba 2014] has inspired modifications that allow HMC and LMC
to better adapt to the geometry of the sampling domain [Betancourt
2013; Girolami and Calderhead 2011], or move faster towards local
maxima [Chen et al. 2016, 2014; Durmus et al. 2016; Ma et al. 2015;
Simsekli et al. 2016; Welling and Teh 2011; Zhang and Sutton 2011].
The resulting proposal distributions often involve several param-
eters, requiring significant fine-tuning effort. Controlled MCMC
techniques [Andrieu and Thoms 2008; Roberts and Rosenthal 2009]
help alleviate this, by automatically adjusting parameters during
the sampling process. We focus on a combination of optimization-
inspired extensions to LMC with controlled MCMC, which we show
can be successfully used for physics-based rendering.

MCMC rendering.MCMC techniques were introduced to physics-
based rendering byVeach andGuibas [1997]. Their algorithm, termed
Metropolis Light Transport, operates in path space, generating new
path proposals by directly modifying the vertices of previously sam-
pled paths. Subsequent path-space algorithms have introduced pro-
posal strategies targeting hard-to-sample specular or near-specular
paths [Hanika et al. 2015; Jakob and Marschner 2012; Kaplanyan
et al. 2014], dealing with complex visibility [Otsu et al. 2018], or
focusing on spatial image gradients [Lehtinen et al. 2013]. Alterna-
tively, Kelemen et al. [2002] introducedMCMC rendering algorithms
that operate in primary sample space, and generate new path pro-
posals by modifying the random numbers used to generate previous
paths. Our algorithms fall within this category, which also includes
algorithms that consider multiple sampling strategies [Hachisuka
et al. 2014], as well as incorporate path-space information [Bitterli
et al. 2018; Otsu et al. 2017; Pantaleoni 2017], potentially only where
necessary [Bitterli and Jarosz 2019]. MCMC path sampling has also
found use within rendering algorithms based on density estimation
techniques [Hachisuka and Jensen 2011; Šik et al. 2016].

Derivatives in rendering. Derivatives of quantities computed by
rendering algorithms have been used in different ways to acceler-
ate the rendering process. Classic approaches include ray differen-
tials [Igehy 1999], path differentials [Suykens and Willems 2001],
and irradiance gradients [Arvo 1994; Holzschuch and Sillion 1995;
Jarosz et al. 2012, 2008b; Marco et al. 2018; Ramamoorthi et al. 2007;
Schwarzhaupt et al. 2012; Ward and Heckbert 1992]. In path-space
MCMC rendering, first-order derivatives have been used to per-
turb difficult to sample paths containing specular-diffuse-specular
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segments [Chen and Arvo 2000; Jakob and Marschner 2012]). Al-
ternatively, Li et al. [Li et al. 2015] use both first and second-order
derivatives, together with an HMC-inspired proposal distribution,
to generate proposals in primary sample space. Our algorithms
follow a similar approach, but use only first-order gradient infor-
mation to generate high-quality proposals, without the need for
expensive second-order differentiation. We discuss the relationship
between our algorithm and that of Li et al. [2015] in more detail in
Section 4. Finally, the proliferation of automatic differentiation tech-
niques [Griewank and Walther 2008] in recent years has motivated
the development of theory and systems for end-to-end differentiable
rendering [Che et al. 2018; Li et al. 2018; Nimier-David et al. 2019;
Zhang et al. 2019], which can facilitate not only faster rendering,
but also inverse rendering [Azinović et al. 2019; Gkioulekas et al.
2016, 2013; Khungurn et al. 2015; Tsai et al. 2019; Zhao et al. 2016]
and integration with learning-based pipelines [Che et al. 2018].

Caching in rendering.Using cached information generated during
preprocessing or on the fly has a long history in rendering. Irra-
diance caching [Ward et al. 1988] accelerates the computation of
indirect illumination by storing a sparse set of incident illumina-
tion samples, and interpolating between them at render time. This
idea is improved by many follow-up works [Krivánek et al. 2006;
Krivanek et al. 2005; Schwarzhaupt et al. 2012; Ward and Heckbert
1992], and generalized to handle participating media [Jarosz et al.
2008a; Marco et al. 2018]. Photon mapping [Jensen 2001] and its
variants [Hachisuka and Jensen 2009; Jarosz et al. 2011; Křivánek
et al. 2014] cache points or beam samples in photon maps, which
they use with kernel density estimation at render time to handle
complex light transport effects such as caustics. Alternatively, path-
guiding methods [Jensen 1995; Müller et al. 2017; Müller et al. 2019;
Reibold et al. 2019; Vorba et al. 2014; Zheng and Zwicker 2019] store
incident radiance information during “training” phases, then use
this information to better sample light paths. Compared to these
prior works, we utilize caching in a fundamentally different way, by
storing primary-sample-space gradient information used to improve
the convergence of LMC. As this cached information only assists
sample generation, and is not used to estimate path contributions,
it does not affect the unbiasedness of our rendering algorithms.

3 MARKOV CHAIN MONTE CARLO RENDERING
We begin by introducing the problem setting, mathematical notation,
and algorithmic concepts for Markov Chain Monte Carlo rendering.
These will serve as background for developing our contributions.

Primary sample space. Our focus will be on physics-based Monte
Carlo rendering algorithms that use the primary sample space formu-
lation of light transport, first proposed by Kelemen et al. [2002]. This
assumes that we have available a path generation algorithm, such as
path tracing [Kajiya 1986], particle tracing [Arvo 1986; Dutré et al.
1993], or bidirectional path tracing (BDPT) [Lafortune and Willems
1993; Veach and Guibas 1995]. Such an algorithm deterministically
transforms a sequence of r (B) uniform random variables into a
light path of length B ∈ [2, . . .∞), that is, an ordered sequence
x̄ = x1 → · · · → xB of three-dimensional points on the surfaces
or in the participating media that make up the scene. We can then
define the space of all light paths as the path space P, the union

of hypercubes needed to generate all of the path space as the pri-
mary sample space U =

⋃∞
B=0 [0, 1]r (B ) , and the path generation

algorithm as a map S : U → P between the two spaces.
With this notation at hand, Kelemen et al. [2002] proposed ex-

pressing radiometric measurements as integrals of the form:

I =

∫
U

f (S (ū))
�����

dµ (ū)
dū

�����
dū =

∫
U

f̃ (ū) dū, (1)

where the measurement contribution function f describes the ra-
diance that flows through the light path x̄ = S (ū), and f̃ (ū) ≡

f (S (ū))
����

dµ (ū)
dū

����. This integral is a re-parameterization of the path-
space integral formulation of light transport [Veach 1997; Veach and
Guibas 1997], with the Jacobian term in Equation (1) accounting for
the change of variables from path space to primary sample space.
Under technical conditions that are typically satisfied by transfor-
mations S corresponding to standard path tracing algorithms, we
can write f̃ (ū) = f (x̄)/p (x̄), where p (x̄) is the probability density
of the path x̄ = S (ū) [Anderson et al. 2017; Kelemen et al. 2002].
The primary sample space has been extended to account for multi-
ple importance sampling [Hachisuka et al. 2014] and mixed-space
techniques [Bitterli et al. 2018; Otsu et al. 2017; Pantaleoni 2017].

Monte Carlo rendering algorithms approximate I by aggregating
weighted contributions from randomly generated sequences ū(t ) :

⟨I ⟩ ≡
1
T

T∑
t=1

f̃
(
ū(t )

)
p̃

(
ū(t )

) . (2)

Typically, sampling in primary sample space is done using MCMC
techniques, though independent sampling techniques also exist [Müller
et al. 2019; Reibold et al. 2019; Zheng and Zwicker 2019].

Markov chain Monte Carlo rendering. MCMC rendering algo-
rithms, first introduced by Veach and Guibas [1997], deviate from
traditional Monte Carlo rendering in terms of how they generate
samples for the estimator of Equation (2): instead of generating
each sample independently, they use Markov chains to create cor-
related sequences of samples. In the following, we describe MCMC
rendering in primary sample space [Kelemen et al. 2002].
Most commonly, MCMC rendering techniques are based on the

Metropolis-Hastings algorithm [Hastings 1970; Metropolis et al.
1953]. This assumes that we have available a proposal distribution
T : U × U → R≥ . Given the current primary sample sequence
ū(t ) , we first sample a proposed sequence v̄ ∼ T

(
ū(t ) → ·

)
.1 Then,

the proposed sequence is accepted with an acceptance probability:

α
(
ū(t ) → v̄

)
= min




1,
f̃ (v̄) T

(
v̄→ ū(t )

)
f̃

(
ū(t )

)
T

(
ū(t ) → v̄

) 

. (3)

If the proposed sequence is accepted, then the current sequence is
updated as ū(t+1) = v̄, otherwise ū(t+1) = ū(t ) . Each new sequence
ū(t+1) is used to update the Monte Carlo estimate of Equation (2),
with a probability distribution p̃

(
ū(t+1)

)
= f̃

(
ū(t+1)

)
/L, where L is a

constant estimated using independent Monte Carlo rendering.
A Monte Carlo estimate (Equation (2)) formed using sequences

sampled with the above Markov chain procedure will be unbiased

1We denote by T ( ·) the probability distribution a sample v̄ is drawn from, and by
T (v̄) the corresponding probability density function evaluated at v̄.
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and consistent if the Markov chain satisfies two conditions: First, it
has a stationary distribution that is proportional to the function f̃ .
Second, it is ergodic, meaning that it will converge to this stationary
distribution from all initial sequences ū0. As a consequence of the
use of the Metropolis-Hastings rule of Equation (3), both conditions
will be satisfied if we select a proposal distribution that satisfies:
T (ū→ v̄) > 0, for all ū and v̄ such that f̃ (ū) > 0 and f̃ (v̄) > 0.
The selection of the proposal distribution T critically affects the

performance of MCMC rendering techniques. As observed by Kele-
men et al. [2002], it is important to combine two types of proposals:
first, large-step mutation proposals Tglobal that can easily reach any
sequence from any other sequence; second, small-step perturbation
proposals Tlocal that generate a proposed sequence by only making
small modifications to the previous sequence. Concretely:
T (ū→ v̄) = πglobalTglobal (ū→ v̄) + πlocalTlocal (ū→ v̄) , (4)

where πglobal,πlocal > 0, πglobal + πlocal = 1. Such combinations
guarantee ergodicity, and can efficiently explore the target space,
which typically consists of many disjointed subsets (informally
termed “islands” by Kelemen et al. [2002]): The large-step mutation
enables global exploration by jumping from one island to another,
and the small-step perturbation enables local exploration by moving
within one island. The large-step mutation proposal is typically im-
plemented by uniformly sampling a sequence independently of the
previous one: Tglobal (ū→ v̄) = Tglobal (v̄). We use Langevin Mone
Carlo to develop a new class of small-step perturbation proposals.

4 LANGEVIN MONTE CARLO
At the basis of our proposed rendering algorithms is a class of
MCMC techniques known as Langevin Monte Carlo (LMC) [Roberts
and Tweedie 1996]. Even though LMC techniques have become
popular in other application areas of MCMC, they remain relatively
unexplored in physics-based rendering—we are aware of one excep-
tion, the H2MC algorithm [Li et al. 2015], which however is derived
from the related Hamiltonian Monte Carlo (HMC) [Betancourt 2017;
Duane et al. 1987; Neal et al. 2011] framework. To keep our paper
self-contained, we provide a brief review of LMC.

LMC techniques take their name from the Langevin diffusion pro-
cess [Lemons and Gythiel 1997]. This is a continuous-time Markov
process ū (t ) , t ∈ [0,∞), that, given a positive function f̃ : U →
R≥ , satisfies the stochastic differential equation [Øksendal 2003]:

dū (t ) =
1
2∇ūL̃ (ū (t )) dt + dW̄ (t ) . (5)

The evolution of ū (t ) is controlled by a deterministic drift term
proportional to the gradient of L̃ (ū (t )) ≡ log f̃ (ū (t )), and the
random Brownian motion term W̄ (t ) , t ∈ [0,∞). This Markov
process is ergodic, with a stationary distribution proportional to
f̃ (ū (t )).
In practice, to simulate the Langevin diffusion, it is necessary

to use a discrete approximation, such as the Euler-Maruyama dis-
cretization [Maruyama 1955]. Given a temporal step-size ϵ > 0, this
corresponds to the following discrete-time Markov chain:

ū(t+1) = ū(t ) +
1
2ϵ∇ūL̃

(
ū(t )

)
+
√
ϵw̄, (6)

where w̄ ∼ N (·; 0, I) is a normally-distributed random variable.
Langevin Monte Carlo algorithms use this discrete Markov chain,
which is equivalent to a gradient ascent procedure with injected
Gaussian noise: the gradient drift term drives the chain towards
points ofU where L̃ has high density, whereas the injected noise
prevents the chain from collapsing to just the (local) maximum.

Due to discretization error, theMarkov chain of Equation (6) is not
guaranteed to converge to the same stationary distribution as the
continuous process. This can be corrected by using the Metropolis-
Hasting rule of Equation (3) to accept or reject states of the chain.
This approach, known as theMetropolis-adjusted Langevin algorithm
(MALA), corresponds to using a Gaussian proposal distribution with
mean ū(t ) + 1

2ϵ∇ūL̃
(
ū(t )

)
and covariance matrix ϵI:

TMALA
(
ū(t ) → v̄

)
= N

(
v̄; ū(t ) + 1

2ϵ∇ūL̃
(
ū(t )

)
, ϵI

)
. (7)

Adaptation. The Markov chain of Equation (6) implicitly assumes
that the coordinates of ū are uncorrelated and have approximately
equal variance; that is, that L̃ is locally isotropic. This can result in
slow convergence when these conditions are violated. This behavior
can be ameliorated by modifying Equation (6) to use a positive-
definite preconditioning matrix M

(
ū(t )

)
[Roberts and Stramer 2002]:

ū(t+1) = ū(t ) +
1
2ϵM

(
ū(t )

)
∇ūL̃

(
ū(t )

)
+
√
ϵ
√
M

(
ū(t )

)
w̄. (8)

The matrix
√
M

(
ū(t )

)
can be computed as the Cholesky decomposi-

tion of M
(
ū(t )

)
. The corresponding proposal distribution becomes:

TMALA
(̄
u(t )→ v̄

)
=N

(
v̄; ū(t )+ 1

2ϵM
(
ū(t )

)
∇ūL̃

(
ū(t )

)
, ϵM

(
ū(t )

))
.

(9)
As the notation suggests, the preconditioningmatrix can varywith ū.
We focus on this case, which we refer to as adaptive preconditioning,
and to the corresponding algorithm as MALA with adaptation.
The preconditioning matrix should be selected to be represen-

tative of the correlations that exist between the dimensions of the
sampling domainU . In gradient-based optimization, this matrix is
ideally set equal to the inverse of the Hessian matrix H ≡

[
∂2 L̃

∂ūi ∂ūj

]
,

as in Newton’s method [Nocedal and Wright 2006]. However, the
Hessian matrix cannot be used for preconditioning in MALA, as it
is not guaranteed to be positive-definite. Approaches to circumvent
this include using the expectation of the Hessian to form the Fisher
information matrix [Girolami and Calderhead 2011], or applying
transformations to the Hessian’s eigenvalues to produce a positive
definite matrix [Betancourt 2013; Li et al. 2015]. Unfortunately, these
Hessian-based approaches introduce a significant computational
overheard compared to standard LMC: first, they require computing
second-order derivatives of L̃, instead of just first-order derivatives;
second, they require performing expensive matrix operations (e.g.,
eigendecomposition of the Hessian). We note additionally that, even
when an eigendecomposition is not required, it will be necessary
to compute a factorization of the preconditioning matrix to sample
the Gaussian proposal of Equation (9). As all of these computations
need to be performed for every sampled path, they can become
prohibitively expensive for MCMC rendering.
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ALGORITHM 1: MALA with adaptation
Input: step-size ϵ > 0.
Output: {ū(t ) }t=1:T .
/* Initialization */

1 sample random ū(1) ;
2 for t = 1 : T − 1 do
3 sample η ∼ Unif ( ·; [0, 1]);
4 if η < πlocal then
5 g̃(t ) ← ∇ū L̃

(
ū(t )

)
; // compute gradient

/* Compute pc. matrix M(t ) and drift vector m(t ) */

6 sample w̄ ∼ N ( ·; 0, I);

7 v̄← ū(t )+ 1
2 ϵM

(t ) ⊙ m(t )+
√
ϵ
(
M(t )

)◦ 1
2⊙ w̄ ; // gen.

proposal

8 else
9 sample v̄ ∼ Tglobal

(
ū(t ) → ·

)
;

10 end
11 ū(t+1) ← MetropolisHastings

(
v̄, ū(t )

)
; // accept or reject

(Equation (3))
12 end

Our contributions. To alleviate these performance considerations,
in this paper we will introduce three variants of MALA with adap-
tation that satisfy the following set of properties:
P.1 They provide adaptation using a diagonal adaptive precon-

ditioning matrix, as well as an adaptive drift vector that will
not necessarily be parallel to the gradient ∇ūL̃

(
ū(t )

)
.

P.2 Both of these adaptation mechanisms will require minimal
processing of only previously-computed first-order gradients.

P.3 The resulting MALA processes will remain ergodic, with the
same stationary distribution as standard MALA.

The combination of properties P.1 and P.2 will ensure that our algo-
rithms are efficient enough to facilitate MCMC rendering, avoiding
second-order differentiation and expensive matrix factorizations.
As we will show, this can be achieved without compromising on
the quality of the sampled paths. Our three algorithms will take the
general form of Algorithm 1, with the computation of the precon-
ditioning matrix and drift vector taking place in an online fashion
(Section 5), a cache-driven fashion, or a hybrid of the two (Section 6).
We note that Algorithm 1 incorporates the large-step mutation of
Equation (4), for which we will follow prior work (though see also
Section 9). Additionally, the algorithm uses a modified version of
the update of Equation (8), to emphasize the computational sim-
plicity of diagonal preconditioning: ⊙, ⊘, and ◦

1
2 are element-wise

multiplication, division, and square root, respectively, 1 is a vector
of all ones, and we overload notation to write M(t ) as a vector.

Hamiltonian Monte Carlo.We briefly discuss the relationship of
LMC to another class of techniques known as Hamiltonian Monte
Carlo (HMC) [Betancourt 2017; Duane et al. 1987; Neal et al. 2011].
HMCusesHamilton’s equations to evolve a continuous-timeMarkov
process, corresponding to a dynamical system with potential energy
determined by the target function L̃, and kinetic energy determined
by a custom mass matrix. In practice, the continuous evolution
equations are approximated using multiple steps of the leapfrog
integrator. This results in a discrete-time Markov chain, which is

combined with the Metropolis-Hastings rule. When only one inte-
gration step is used between proposals, this Markov chain becomes
equivalent to MALA, with the mass matrix used for preconditioning
in Equation (8) [Girolami and Calderhead 2011; Neal et al. 2011].
The use of multiple steps can help reduce sample correlation, but is
prohibitively expensive for MCMC rendering, as explained by Li et
al. [2015]. They instead derive a single-step procedure using a Gauss-
ian approximation to the potential energy; as we discussed above,
this is equivalent to MALA with Hessian-based preconditioning.

5 ONLINE ADAPTATION
Our goal in this section is to develop online adaptation mechanisms
for MALA that continuously update the preconditioning matrix and
drift vector as new samples are generated, while also satisfying prop-
erties P.1-P.3. For adaptation to be beneficial, the preconditioning
matrix should adapt to the local geometry of the sampling domain,
and the drift vector should accelerate convergence to local modes.
For inspiration on how to achieve these desiderata, we can uti-

lize the similarity between the MALA transition distribution and
gradient-based optimization. For example, we could draw an anal-
ogy with classical quasi-Newton optimization algorithms, which
strike a balance between the fast convergence of the Hessian-based
Newton’s method, and the computational efficiency of standard first-
order gradient descent. Quasi-Newton algorithms achieve this by
using, at each iteration, the accumulated history of first-order gra-
dients, to approximate the Hessian matrix. Unfortunately, naively
converting these algorithms to a MALA procedure (e.g., by adding
noise to each iteration) will not be successful: First, most common
Hessian approximations, such as the BFGS, DFP, and Broyden meth-
ods [Nocedal and Wright 2006], are not guaranteed to be positive
definite; enforcing positive-definitiveness requires expensive matrix
operations [Simsekli et al. 2016; Zhang and Sutton 2011], which
contradicts our desired property P.2. Second, even if positive defini-
tiveness could be guaranteed, the resulting Markov chain would not
necessarily be ergodic, as required by our desired property P.3.
We develop our online adaptation procedure by drawing ideas

from two distinct areas: First, we take advantage of the similar-
ity between the MALA transition distribution and gradient-based
optimization. In particular, we propose to use the Hessian approx-
imations and momentum terms of state-of-the-art stochastic gra-
dient descent (SGD) algorithms [Duchi et al. 2011; Kingma and Ba
2014], as the preconditioning matrix and drift vector, respectively, of
MALA with adaptation. Second, we look at the theory of controlled
MCMC [Andrieu and Thoms 2008; Roberts and Rosenthal 2009] and
use it to modify the online computation of the preconditioning ma-
trix and drift vector in a way that ensures ergodicity. We refer to the
resulting algorithm as MALA with online adaptation. As we develop
our algorithm, we use Figure 2 as a two-dimensional visualization
of the effect of each of its components on sampling performance.

Adam preconditioning. Current state-of-the-art SGD algorithms
use an adaptive step-size matrix that was originally introduced in
the AdaGrad algorithm [Duchi et al. 2011], and was later modified in
algorithms such as Adam [Kingma and Ba 2014]. Even though these
algorithms are popular, e.g., for training deep learning pipelines,
they have not previously been used for MCMC rendering. We will
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Fig. 2. 2D sampling example:We compare various MCMC sampling algo-
rithms on a simple two-dimensional anisotropic geometry, typical of those
encountered in the primary sample space near caustics. Starting at the same
initial position (top of the curve), we show 2048 samples and acceptance
ratios produced by each algorithm. “Mmt.” refers to momentum, and “diag.”
and “full” to diagonal and full preconditioning, respectively.

describe the Adam algorithm in the context of MALA, where the
step-size matrix plays the same role as a preconditioning matrix.

Consider a set of samples ū(1) , . . . , ū(t ) produced by the Markov
chain. For each of the samples, we denote by g̃(τ ) ≡ ∇ūL̃

(
ū(τ )

)
,τ =

1, . . . , t , the gradient of the log-path contribution at that point. These
gradients are already computed when generating the MALA pro-
posals. Adam first forms a diagonal accumulation matrix as: 2

G(t )
O =

t∑
τ=1

βτ−1 (1 − β ) diag
(
g̃(τ ) ·

(
g̃(τ )

)⊤)
. (10)

The constant β ∈ [0, 1] results in accumulation with exponentially-
decaying weights, to emphasize more recent derivatives (likely to
be closer to the current location ū(t ) ), and downweight older ones.
In practice, the accumulation is performed iteratively, without the
need to store previous gradients (see Algorithm 2). Adam uses G(t )

O
to approximate the Hessian and preconditioning matrix at ū(t ) as:

H(t )
O = δ I +

√
G(t )
O , (11)

M(t )
O =

(
H(t )
O

)−1
, (12)

where δ > 0 is a small constant.
We make the following observations for Equations (10)-(12): First,

the computation of the preconditioning matrixM(t )
O only uses previ-

ously computed first-order gradients. Second,M(t )
O is guaranteed to

be positive definite, as required for MALA with adaptation, without
the need for additional eigendecomposition operations. Third, both
M(t )

O and its factorization can be computed using simple scalar inver-
sion and square root operations. From these, we conclude that the
preconditioning matrixM(t )

O satisfies properties P.1-P.2. Finally, we
refer to the AdaGrad and Adam papers [Duchi et al. 2011; Kingma
and Ba 2014] for theoretical arguments justifying the Hessian ap-
proximation of Equations (10)-(12). All of these makeM(t )

O a suitable
preconditioning matrix for MALA with adaptation.

2We note that Adam includes a bias correction term in the accumulation matrix. We
omit this term, as we found empirically that it results in worse rendering performance.

Diagonal versus full preconditioning. The computational advan-
tages of diagonal adaptation come at the cost of potentially worse
adaptation: the preconditioning matrix M(t )

O can no longer capture
correlations that may exist between the dimensions of the sampling
spaceU . As discussed by Li et al. [2015], accounting for these cor-
relations can improve rendering performance for complex scenes.
To quantitatively assess the extent to which adaptation with

diagonal preconditioning negatively affects sampling performance,
we consider a full-variant of Adam preconditioning [Duchi et al.
2011]. This requires modifying the accumulation matrix as:

G(t )
O =

t∑
τ=1

βτ−1 (1 − β ) g̃(τ ) ·
(
g̃(τ )

)⊤
, (13)

with Equations (11)-(12) remaining the same. The resulting matrix
M(t )

O remains positive definite, and therefore can be used for pre-
conditioning. Computing this full preconditioning matrix requires
factorizing the matrix G(t )

O , and inverting the matrix H(t )
O . An addi-

tional factorization is required to compute
√
M(t )

O for sampling. We
note that the computational overhead of these operations compared
to the case of diagonal preconditioning can be alleviated by using
efficient rank-two update algorithms [Brodlie et al. 1973; Zhang and
Sutton 2011] to directly compute both M(t )

O and its factorization.
In Figure 3(e-f), we compare equal-sample renderings produced

using diagonal and full preconditioning. We observed that full pre-
conditioning provides a small improvement over diagonal precondi-
tioning. This small improvement comes with a considerable com-
putational overhead, resulting in more than double the runtime
compared to diagonal preconditioning. In Section 8, we show ad-
ditional experiments, including comparisons to the Hessian-based
preconditioning of Li et al. [2015], supporting these observations.
Therefore, we focus on the diagonal case in the rest of the paper.

Adam momentum. In addition to a Hessian approximation, Adam
uses momentum [Polyak 1964; Sutskever et al. 2013] to accelerate
optimization convergence. We adopt the same as an adaptive drift
vector in MALA. Concretely, we compute the momentum vector as:

m(t )
O =

t∑
τ=1

ατ−1 (1 − α ) g̃(τ ) . (14)

where α ∈ [0, 1] controls the exponential decay of older gradients.
As in Equation (10), in practice gradients are accumulated iteratively.
In the next section, we describe how we modify MALA to use this
momentum vector and the preconditioning matrix of Equation (12).

5.1 Ensuring ergodicity
A naive way to combine the Adam preconditioning and momentum
schemes with MALA would be to modify Equation (8) as:

ū(t+1) = ū(t ) +
1
2ϵM

(t )
O m(t )

O +
√
ϵ

√
M(t )

O w̄. (15)

Unfortunately, using this equation to generate samples is likely to
result in incorrect estimates, as the resulting stochastic process is
not guaranteed to be ergodic, even when combined with Metropolis-
Hastings. This is because the proposal distribution implied by Equa-
tion (15) is no longer time-homogeneous: Due to the use of the pre-
conditioning matrix M(t )

O and momentum vector m(t )
O , the proposal
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Fig. 3. Ablation study: We use the door scene to compare different versions of our proposed MALA with online adaptation. In (a-f), we show equal-sample
(64 samples-per-pixel) renderings produced using the small-step perturbation of Kelemen et al. [2002], and MALA with different combinations of momentum
(“mmt.”) and diagonal (“diag.”) or full preconditioning. In (g-h), we show converged (20, 000 samples-per-pixel) renderings produced using MALA with online
adaptation, with and without diminishing adaptation (“DA”). All images include error maps with respect to a reference rendering in (i) produced using BDPT.

will be different each time the process returns to a specific state ū.
(Equivalently, the proposal is a function of not just ū, but also the
time t .) Consequently, the conditions for ergodicity we discussed in
Section 3 are no longer sufficient. To address this problem, we first
present some technical background on controlled MCMC techniques,
then use this theory to derive an ergodic version of Equation (15).

Controlled MCMC. We provide a brief review, referring to An-
drieu and Thoms [2008] for more details, and to Hachisuka and
Jensen [2011] for a previous application of the controlled MCMC
framework to rendering in the context of photon mapping.3
Controlled MCMC algorithms consider, in addition to the sam-

pling domainU , a parameter domainΘ. Parameter vectors θ ∈ Θ
control the Markov chain’s transition distribution P : U×U×Θ →
R≥ . Each parameter vector effectively maps to a different transition
distribution P (ū→ ·;θ ), which can be used to sample new states
for the chain. The parameter vectors to be used are determined
using a time-varying control function F that maps tuples of states to
parameters. At time t +1, given the history of samples ū(1) , . . . , ū(t )
and an initial parameter vector θ (0) , sampling proceeds as:

Sample ū(t+1) ∼ P
(
ū→ ·;θ (t )

)
. (16)

Update θ (t+1) = F
(
t + 1,θ (0) , ū(1) , . . . , ū(t+1) ) . (17)

3Controlled MCMC is often also referred to as adaptive MCMC. We do not use this
term, to avoid confusion with MALA with adaptation.

In our derivation, we will use a set of three conditions that are
sufficient for creating an ergodic controlled MCMC process, which
we simplify and summarize as follows.

C.1 Simultaneous ergodicity: For all parameter vectors θ ∈ Θ, the
transition distribution P (ū→ ·;θ ) must be ergodic.

C.2 Bounded convergence: The spaceU ×Θ is compact.
C.3 Diminishing adaptation: The time-varying transition distri-

bution P
(
ū→ ·;θ (t )

)
converges to some fixed distribution

P (ū→ ·;θ∗) as t → ∞.

These conditions were derived by Roberts and Rosenthal [2007], and
we refer to their paper for their technical formulation. Whereas con-
ditions C.1 and C.2 are typically trivially satisfied, the diminishing
adaptation condition C.3 requires careful design of the controlled
MCMC process. Effectively, this condition ensures that, as t → ∞,
the proposal distribution becomes time-homogeneous.

Enforcing diminishing adaptation.We now revisit Equation (15),
which we can interpret as a controlled MCMC process: its parameter
vector is the tuple θ (t ) =

(
m(t )
O ,M

(t )
O

)
, and the control function F

corresponds to Equations (14) and (10)-(12). Finally, the transition
distribution P is the combination of a modified Equation (9):

Tonline
(
ū→ v̄;θ (t )

)
= N

(
v̄; ū + 1

2ϵM
(t )
O m(t )

O , ϵM
(t )
O

)
, (18)

with the Metropolis-Hastings acceptance rule of Equation (3).
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ALGORITHM 2: MALA with online adaptation
Input: exponential decay rates α , β , diminishing adaptation exponents

c1, c2, and positive constant δ .
/* Initialization: */

1 begin
2 G(0) ← 0, m(0) ← 0, d(0) ← 0;
3 end

/* Compute pc. matrix M(t ) and drift vector m(t ): */

4 begin
5 G(t ) ← βG(t−1) + (1 − β ) g̃(t ) ⊙ g̃(t ) ;

6 M(t ) ← diag
(
1 ⊘

(
δ1 + t−c1

(
G(t )

)◦ 1
2
))

; // pc. matrix

7 d(t ) ← αd(t−1) + (1 − α ) g̃(t ) ;
8 m(t ) ← t−c2 d(t ) + g̃(t ) ; // momentum

9 end

This controlled MCMC process satisfies the simultaneous ergod-
icity condition C.1: For each θ , the proposal distribution of Equa-
tion (18) is equivalent to MALA with a fixed preconditioning matrix
and mean shift that, when combined with Metropolis-Hastings, is
ergodic. It also satisfies the bounded convergence condition C.2,
becauseU is bounded and closed, andΘ is in practice finite (floating
point numbers have finite state space [Hachisuka and Jensen 2011]).
However, this controlled MCMC process does not satisfy the

diminishing adaptation condition C.3: As t → ∞, M(t )
O and m(t )

O do
not converge to a limit that is either fixed or a function of only ū(t ) .
To address this, we propose to modify Equations (11) and (14) as:

H(t )
O = δ I +

1
tc1

√
G(t )
O , (19)

m(t )
O = g̃(t ) +

1
tc2

t∑
τ=1

ατ−1 (1 − α ) g̃(τ ) , (20)

where c1, c2 > 0 are positive exponents. With this modification, as
t → ∞, M(t )

O converges to δ I, and m(t )
O converges to the gradient

g̃(t ) . Therefore, the modified controlled MCMC process satisfies
the diminishing adaptation condition C.3, and is thus ergodic. We
confirm this and demonstrate the need for diminishing adaptation
in Figure 3(g-i): when rendering converged images with and without
diminishing adaptation, the former matches the reference (rendered
with BDPT), whereas the latter results in strong artifacts.

We term this modified controlled MCMC process MALA with
online adaptation. We summarize the online adaptation procedure in
Algorithm 2, using the same notational conventions as Algorithm 1.

Discussion. In Figures 3(a-e), we show equal-sample comparisons
of different versions of our algorithm against two baselines, the
small-step perturbation of Kelemen et al. [Kelemen et al. 2002], and
standard MALA without adaptation. We observe that both of the
adaptation mechanisms we introduced, adaptive drift and (espe-
cially) preconditioning, result in significantly improved rendering
performance. Their combined use in MALA with online adaptation
reduces error by almost 80% compared to standard MALA. This
improvement comes at a negligible computational overhead—the
runtimes for Figures 3(b) and (e) differ by approximately 8%. Addi-
tionally, in Section 8, we perform equal-time comparisons of our

algorithm with state-of-the-art MCMC rendering algorithms (in-
cluding a version of MALA with Hessian-based preconditioning [Li
et al. 2015]). Despite its simplicity, our algorithm results in 2 − 4×
error reduction across a variety of complex scenes.
At the same time, we can identify two shortcomings of MALA

with online adaptation. First, the diminishing adaptation scheme
of Equations (19)-(20) has the effect that, as t → ∞, our algorithm
converges to standard MALA without preconditioning or momen-
tum (Equation (7)). This can be problematic for complicated scenes
where rendering low-noise images requires a very large number of
samples, as later samples will not benefit from preconditioning.
Second, as discussed in Section 3 and shown in Algorithm 1,

in practice it is necessary to combine the MALA-based small-step
perturbation with a large-step mutation. When a large step is per-
formed and the Markov chain moves to a new neighborhood inU ,
the accumulated preconditioning matrix M(t )

O and momentum vec-
torm(t )

O will not be good approximations of the local geometry until
a few more small steps are performed within this neighborhood. As
a result, we expect that our adaptive preconditioning will not be
effective immediately after the occurrence of large steps, resulting
in many rejected samples. Even though we can mitigate this effect
by reducing the probability πglobal of a large step, this would result
in slower global exploraion. In the next section, we build upon the
techniques we developed in this section to propose a version of
MALA with adaptation that overcomes both of the shortcomings
discussed above, without hindering global exploration.

6 CACHE-DRIVEN AND HYBRID ADAPTATION
In this section, we show how to modify MALA with online adap-
tation to achieve better asymptotic performance as t → ∞ and
reduce disruption by large steps, while still producing an algorithm
that satisfies properties P.1-P.3. Our main insight is as follows:
introducing diminishing adaptation in the previous section was nec-
essary because Equations (10) and (14) accumulate gradients using
exponentially-decaying weights. This accumulation scheme serves
as a computationally efficient proxy for using only past gradients
that were computed in the proximity of the current sample. If we can
afford to store and query all previously-computed gradients, then
we can modify these rules to only use nearby previous gradients,
without the need for exponentially-decaying accumulation.

We formalize this insight by making two contributions: First, we
combine a new gradient caching scheme with the adaptation rules
of the previous section to propose a new algorithm that we call
MALA with cache-driven adaptation, and which remains ergodic
without the need for diminishing adaptation. Second, we develop a
hybrid between online and cache-driven adaptation, that combines
their complementary advantages. The resulting hybrid algorithm
will be the main algorithm we use in our rendering experiments.

Gradient caching. At any given time t , we denote by
C (t ) ≡

{(
ū(τ ) , g(τ )

)
,τ = 1, . . . , t

}
, (21)

the set of tuples of sequences ū(τ ) and corresponding gradient values
g(τ ) that the Markov chain has visited. We refer to this set as a
gradient cache, hinting at its eventual implementation in Section 7.
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Given a sequence v̄ and a radius r > 0, we denote by
Q

(
v̄;C (t ) , r

)
≡
{
τ :

(
ū(τ ) , g(τ )

)
∈ C (t ) and ū

(τ ) − v̄ < r
}
,

(22)
the set of integer indices for tuples in C (t ) whose sequence ū(τ ) is
within Euclidean distance r of v̄. Continuing the cache analogy, we
refer to this set as the query of cache C (t ) for point v̄.

Cache-driven preconditioning and momentum.We can now update
the definitions of preconditioning and momentum in Section 5 so
that they use gradient caching. In particular, we define diagonal
preconditioning with gradient caching as:

G(t )
C = diag

*..
,

1
���Q

(
v̄;C (t ) , r

) ���
∑

τ ∈Q (ū(t ) ;C (t ),r )

g̃(τ ) ·
(
g̃(τ )

)⊤+//
-
, (23)

H(t )
C = δ I +

√
G(t )
C , (24)

M(t )
C =

(
H(t )
C

)−1
, (25)

where ���Q
(
v̄;C (t ) , r

) ��� is the size of the set Q (
v̄;C (t ) , r

)
. Similarly,

we define momentum with gradient caching as:

m(t )
C =

1
���Q

(
v̄;C (t ) , r

) ���
∑

τ ∈Q (ū(t ) ;C (t ),r )

g̃(τ ) . (26)

Finally, with these definitions at hand, we modify the MALA
update rule of Equation (8) to take the form:

ū(t+1) = ū(t ) +
1
2ϵM

(t )
C m(t )

C +
√
ϵ

√
M(t )

C w̄, (27)

Equivalently, given a cache C (t ) , we can define a controlled variant
of the MALA proposal distribution of Equation (9) as:

Tcache
(
ū→ v̄;C (t )

)
= N

(
v̄; ū + 1

2ϵM
(t )
C m(t )

C , ϵM
(t )
C

)
. (28)

The combination of this proposal with the Metropolis-Hastings ac-
ceptance rule is our proposed MALA with cache-driven adaptation.

Ergodicity. Analogously to Section 5.1, MALA with cache-driven
adaptation is a controlled MCMC procedure: the parameter vector
is the gradient cache, θ (t ) ≡ C (t ) , and the control function F cor-
responds to Equations (23)-(26). In Section 5.1, we had to modify
the control equations for online preconditioning and momentum,
to ensure that the diminishing adaptation condition C.3 is satisfied.
By contrast, this is not necessary for the cache-driven variants we
defined above, as ergodicity can be achieved in an alternative way.
In particular, we can define some threshold H on the maximum

number of entries ���C
(t ) ��� we will allow the cache to store. Once

this threshold is reached, we stop caching, while continuing to run
MALA with the preconditioning matrix and momentum of Equa-
tions (23)-(26). Consequently, the time-varying transition distribu-
tion of Equation (28) reaches a fixed distribution when the threshold
H is reached, and therefore satisfies the diminishing adaptation con-
dition C.3. We conclude that MALA with cache-driven adaptation
is ergodic with the correct stationary distribution. This mechanism
for ensuring ergodicity is known as finite adaptation [Roberts and
Rosenthal 2007], and remains effective for any finite value of H . We
summarize the cache-driven adaptation procedure in Algorithm 3,
using the same notational conventions as Algorithm 1.

ALGORITHM 3: MALA with cache-driven adaptation
Input: radius r , and positive constant δ .
/* Initialization: */

1 begin
2 C (0) ← ∅;
3 end

/* Compute pc. matrix M(t ) and drift vector m(t ): */

4 begin
5 C (t ) ← C (t−1) ;
6 if ���C

(t ) ��� < H then
7 C (t ) ← C (t ) ∪

{(
ū(t ), g̃(t )

)}
; // update gradient cache

8 end

9 s ← ���Q
(
v̄; C (t ), r

) ���−1;
10 G(t ) ← s

∑
τ ∈Q

(
ū(t ) ;C (t ),r

) g̃(τ ) ⊙ g̃(τ ) ;

11 M(t ) ← diag
(
1 ⊘

(
δ1 +

(
G(t )

)◦ 1
2
))

; // pc. matrix

12 m(t ) ← s
∑
τ ∈Q

(
ū(t ) ;C (t ),r

) g̃(τ ) ; // momentum

13 end

Comparing online and cache-driven adaptation. We have now
defined two versions of MALA with adaptation, one in Section 5
using an online procedure inspired from SGD, and one in this section
driven by a gradient cache. The cache-driven version overcomes
the two limitations of the online version discussed at the end of
Section 5: in particular, given that it does not require introducing
explicit diminishing adaptation, the cache-driven version converges
to MALA with a non-unit preconditioning matrix—approximately
the one that would result from an MCMC process using the online
scheme without large-step mutations or exponentially-decaying
summation. Additionally, the cache-driven version adapts to the
occurrence of large-step mutations seamlessly, as Equations (23)-
(26) allow it to immediately switch to computing preconditioning
matrices and momentum vectors using any available gradients in
the new neighborhood it moves to. We show a two-dimensional
visualization of this improved behavior in Figure 4.

Conversely, these advantages come at the cost of maintaining the
gradient cache C (t ) , and performing potentially expensive cache
queries Q

(
·;C (t ) , r

)
for each sampled path. This cost increases as

rendering progresses and the cache becomes larger, making the
addition of new entries and queries more expensive. Another down-
side of the cache-driven scheme is that at the initial stages of the
rendering process, when the cache is sparsely populated, it may
result in no preconditioning even in cases where the online scheme
would produce a non-identity preconditioning matrix. This can hap-
pen, for example, after a sequence of small-step perturbations that
are all greater than the radius r . These often occur immediately
after a large step mutation, when the Markov chain lands at a new
neighborhood and starts quickly converging towards the local mode:
Whereas the online scheme would use the resulting sequence of gra-
dients to form a preconditioning matrix, the cache-driven scheme
would reject them when quering for nearby gradients.

Finally, the effectiveness of cache-driven adaptation will decrease
as the path length B, and thus dimensionality r (B) of the cached
gradients, increases. This is because of the curse of dimensionality,
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Fig. 4. 2D Gaussian mixture model: We compare the performance of MALA with online and hybrid adaptation, on a two-dimensional disconnected
geometry, typical of the isolated “islands” of primary sample space. Both algorithms use full preconditioning and large-step mutation probability Tglobal = 0.1.
Each row shows sample distributions when running the algorithm for (from left to right) 0.5K, 1K, 2K, 4K, 8K and 16K samples. In the bottom row, the insets
show the evolution of the anisotropic transition kernels at two different points in space. Please zoom in to better compare the results.

which states that the number of samples that need to be cached for
nearest-neighbor estimation to be accurate increases exponentially
with dimensionality. As we discuss in Section 7, in practice we
circumvent this issue by disabling adaptation for very long paths,
as is commonly done in many MCMC rendering techniques [Müller
et al. 2019; Reibold et al. 2019; Zheng and Zwicker 2019].

Hybrid adaptation.We propose a hybrid between the two adapta-
tion schemes that combines their complementary advantages. Our
hybrid operates in two stages, as shown in Algorithm 4.

The first stage continues while the number of entries in the cache,
���C

(t ) ���, is smaller than some predefined threshold H . During this
stage, we use online adaptation as in Algorithm 2, but without
diminishing adaptation (c1, c2 = 0), as ergodicity will be guaranteed
when we switch to the second stage. Additionally, we continue to
expand the cache with any new gradient evaluation.
The second stage starts once the number of entries in the case

reaches the threshold, ���C
(t ) ��� ≥ H . During this stage, we disable

online adaptation and use exclusively the cache-driven version. We
additionally stop adding new entries to the cache, which ensures
ergodicity and helps reduce the cost of subsequent cache queries.

7 IMPLEMENTATION DETAILS
We implement our proposed algorithms within the open-source
reference implementation [Li 2015] of H2MC [Li et al. 2015]. This
is a primary-sample-space MCMC renderer that, critically, uses au-
tomatic differentiation [Bell 2015] to compute derivatives of the
measurement contribution function. We modify the automatic dif-
ferentiation code to disable the computation of Hessian matrices,
which are needed by H2MC but not by our algorithms. Our imple-
mentation is available at the project website [Luan et al. 2020].

Perturbation and mutation strategies.We use the same large-step
mutation and small-step perturbation strategies as H2MC, includ-
ing their proposed parameterization change and mixing weights.
We only apply MALA-based sampling to the small-step mutation,
as suggested by H2MC. We also follow H2MC and disable MALA

ALGORITHM 4: MALA with hybrid adaptation
Input: exponential decay rates α , β , radius r , positive constant δ .
/* Initialization: */

1 begin
2 G(0) ← 0, m(0) ← 0, C (0) ← ∅;
3 end

/* Compute pc. matrix M(t ) and drift vector m(t ): */

4 begin
5 C (t ) ← C (t−1) ;
6 if ���C

(t ) ��� < H then
/* online */

7 C (t ) ← C (t ) ∪
{(
ū(t ), g̃(t )

)}
; // update gradient cache

8 G(t ) ← βG(t−1) + (1 − β ) g̃(t ) ⊙ g̃(t ) ;

9 M(t ) ← diag
(
1 ⊘

(
δ1 +

(
G(t )

)◦ 1
2
))

; // pc. matrix

10 m(t ) ← αm(t−1) + (1 − α ) g̃(t ) ; // momentum

11 else
/* cache-driven */

12 s ← ���Q
(
v̄; C (t ), r

) ���−1;
13 G(t ) ← s

∑
τ ∈Q

(
ū(t ) ;C (t ),r

) g̃(τ ) ⊙ g̃(τ ) ;

14 M(t ) ← diag
(
1 ⊘

(
δ1 +

(
G(t )

)◦ 1
2
))

; // pc. matrix

15 m(t ) ← s
∑
τ ∈Q

(
ū(t ) ;C (t ),r

) g̃(τ ) ; // momentum

16 end
17 end

with adaptation for paths of length B ≥ 8 (primary-sample-space se-
quences of length r (B) ≥ 16), reverting to Gaussianmutations [Kele-
men et al. 2002] for longer paths. We note that we did not imple-
ment lens perturbations in our algorithm, which we also disabled
when comparing with H2MC. This lets us perform fair comparisons
with other primary-sample-space MLT methods [Bitterli et al. 2018;
Hachisuka et al. 2014] that do not support lens perturbations.
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Gradient caching. We implement the gradient cache with the
nanoflann library [Blanco and Rai 2014], which uses KD-tree struc-
tures to support efficient nearest-neighbor searches even in high-
dimensional spaces (such as the primary sample space). To further
reduce the overhead of cache queries, we use a hybrid of nearest-
neighbor and radius queries: We terminate the KD-tree traversal
once there are K neighbors found within the search radius r .

Truncated gradients. Livingstone and Zanella [2019] recently an-
alyzed the convergence behavior of gradient-based MCMC (e.g.,
Langevin and Hamiltonian Monte Carlo), and showed that very
large variations in the magnitude of the gradients can significantly
deteriorate convergence. This observation is also supported by older
literature, which suggests truncating gradients when using either
standard MALA [Roberts and Tweedie 1996] or MALA with adap-
tation [Atchade 2006]. We follow this suggestion and truncate all
dimensions of our gradients to a maximum value of д = 100, which
helps ensure robust convergence across a large variety of scenes.

Parameter settings. Algorithms 1-4 use a few parameters, namely:
exponential-decay rates (α , β), diminishing adaptation exponents
(c1, c2), cache query radius (r ), nearest neighbors (K ), cache size (H ),
uniform preconditioning weight (δ ), and step size (ϵ). We set α = 0.9,
β = 0.999, and δ = 0.001, which are the values recommended by
Kingma and Ba [2014]. We also select values ϵ = 0.01, r = 0.01,
K = 30, andH = 10, 000 for the remaining parameters. We use these
parameter values for all the renderings shown in this paper.

8 EXPERIMENTS
We run all experiments on a machine with an Intel Xeon E5-2630
v3 processor. We render all reference images by running BDPT
for more than 12 hours per scene. The supplemental document
shows additional renderings, and statistics. The supplemen-
tal HTML viewer shows the full set of rendering results, and
includes an interactive viewer to facilitate comparisons. The
viewer is based on the supplement of Bitterli et al. [2018]. Both
supplements are available at the project website [Luan et al. 2020].

Equal-time comparisons. We perform equal-time comparisons
of the online (Algorithm 2) and hybrid (Algorithm 4) versions of
MALA with adaptation (Algorithm 1), with BDPT and five state-
of-the-art MCMC rendering algorithms: the path-space MEMLT
algorithm [Jakob and Marschner 2012], and the primary-sample-
space RJMLT [Bitterli et al. 2018], MMLT [Hachisuka et al. 2014],
and H2MC [Li et al. 2015] algorithms. We use a set of 17 scenes
with complex illumination, occlusions, caustics, and interreflections.
These characteristics make these scenes challenging for non-MCMC
rendering algorithms such as BDPT. To verify the consistency of all
the MCMC algorithms we test, we confirmed that in all scenes they
match the reference when run until convergence. On all scenes,
MALA with hybrid adaptation was the best performing algorithm,
and MALA with online adaptation performed second best. Rela-
tive performance among the other MCMC algorithms varied from
scene to scene. These results suggest that, despite its simplicity,
MALA with online adaptation can be expected to have robust and
efficient performance across a large variety of scenes. Additional
performance gains can be obtained by using MALA with hybrid
adaptation, which however has higher implementation complexity.

Overall, our two algorithms resulted in an average MSE improve-
ment of 3× compared to the third best. Finally, BDPT had the worst
average performance, suggesting that the complexity of our scenes
makes it necessary to use MCMC rendering for good performance.
Figures 1 and 5 show a representative sample of these renderings
for all the MCMC algorithms; we provide the complete set of com-
parisons, including comparisons to BDPT, in the supplement.

Motion blur simulations.We follow Li et al. [2015] and simulate
motion blur by treating time as another dimension in the primary
sample space. We then perform an equal-time comparison of our
algorithms with H2MC, on two scenes that include challenging
motion blur effects, as shown in Figure 6 (we provide full-sized ren-
derings and comparisons in the supplement): the cars scene contains
a static and a moving car, and the necklace scene shows a gemstone
rotating and a golden ring moving linearly. In addition to motion
blur, both scenes include other difficult light transport effects, such
as specular-diffuse-specular (SDS) paths and complex caustics. Our
algorithms significantly outperformed H2MC in both scenes, result-
ing in 7.9× and 7.4× MSE improvements. This demonstrates the
ability of our algorithms to adapt to each dimension of the primary
sample space, including time. We note that we did not compare
against the other MCMC rendering algorithms we considered in
this section: RJMLT does not provide an implementation that sup-
ports motion blur, and Li et al. [2015] demonstrated that H2MC
outperforms MMLT and MEMLT in scenes with motion blur effects.

Evaluation of preconditioning schemes. As we discussed in Sec-
tion 5, our algorithms use a diagonal preconditioning matrix to
increase the computational efficiency of generating new samples,
at the cost of potentially worse adaptation compared to full pre-
conditioning. To better characterize this tradeoff between sampling
efficiency and adaptation quality, we use a set of nine scenes to
perform additional experiments comparing our diagonal and full
preconditioning, as well as the Hessian-based preconditioning of Li
et al. [2015]. First, we perform equal-sample and equal-time com-
parisons of the three preconditioning schemes combined with our
MALAwith online adaptation. The equal-sample comparisons allow
us to evaluate the quality of generated samples, without concern
for computational complexity; whereas the equal-time comparisons
allow us to evaluate overall performance, taking into account both
sample quality and computational cost. In the equal-sample compar-
isons, Hessian-based and full preconditioning resulted in an average
MSE improvement of 1.3× and 1.1× compared to diagonal precondi-
tioning, suggesting that both schemes produce better samples than
diagonal preconditioning. However, in the equal-time comparisons,
Hessian-based and full preconditioning resulted in 2.4× and 2.1×
worse average MSE than diagonal preconditioning. Therefore, the
improvement in sample quality that Hessian-based and full precon-
ditioning provide is outweighed by their increased computational
complexity. These observations hold consistently across all scenes,
supporting our use of diagonal preconditioning. As discussed in
Section 5, for full preconditioning, the increased computational com-
plexity is due to the matrix operations (factorization and inversion)
required to generate proposals. For the Hessian-based precondition-
ing, this increased complexity is further compounded by second-
order differentiation. Full preconditioning provides a mid-point
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MSE: 2.8×MSE: 2.8× MSE: 3.7×MSE: 3.7× MSE: 2.9×MSE: 2.9× MSE: 3.5×MSE: 3.5× MSE: 1.4×MSE: 1.4× MSE: 1.0×MSE: 1.0×
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MSE: 4.2×MSE: 4.2× MSE: 4.7×MSE: 4.7× MSE: 3.0×MSE: 3.0× MSE: 3.4×MSE: 3.4× MSE: 1.2×MSE: 1.2× MSE: 1.0×MSE: 1.0×

MEMLTMEMLT MMLTMMLT RJMLTRJMLT H2MCH2MC Ours (online)Ours (online) Ours (hybrid)Ours (hybrid) Ref.Ref.
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Fig. 5. Equal-time comparisons: We compare MEMLT [Jakob and Marschner 2012], MMLT [Hachisuka et al. 2014], RJMLT [Bitterli et al. 2018], H2MC [Li
et al. 2015] and two of our algorithms, across several scenes with complex illumination and occlusion, glossy caustics and interreflections.
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(a) Cars(a) Cars (b) Necklace(b) Necklace

H2MCH2MC OursOurs Ref.Ref.

MSE: 7.9×MSE: 7.9× MSE: 1.0×MSE: 1.0×

H2MCH2MC OursOurs Ref.Ref.

MSE: 7.4×MSE: 7.4× MSE: 1.0×MSE: 1.0×

Fig. 6. Motion blur effects: Equal-time comparison of H2MC and our
hybrid adaptation on the cars (3 minutes) and necklace (7 minutes) scenes.

between the high sample quality of Hessian-based preconditioning,
and the computational efficiency of diagonal preconditioning. Fig-
ure 7 compares renderings for a representative scene; we provide
the complete set of comparisons in the supplement.
Second, we compare equal-sample and equal-time renderings

produced using our proposed MALA with hybrid adaptation, com-
bined with either our diagonal or Hessian-based preconditioning.
In the latter case, during the second stage of our hybrid algorithm,
we estimate the Hessian by averaging the Hessian matrices cached
at nearby points. Therefore, caching completely removes the need
for second-order differentiation during the second stage; we note,
though, that sample generation still requires expensive matrix oper-
ations (enforcing positive-definitiveness, factorization, and inver-
sion). Compared to our diagonal preconditioning, Hessian-based
preconditioning resulted in 1.6× better averageMSE in equal-sample
renderings, and 2.5× worse average MSE in equal-time renderings.
We observe that, even though the use of caching helps reduce the
computational overhead of Hessian-based preconditioning during
the latter stage of the rendering process, this overhead is still signifi-
cant enough to outweigh any performance gains from the improved
sample quality. Therefore, these experiments suggest that using
diagonal preconditioning is preferable even for cache-driven adap-
tation. Figure 8 compares renderings for one representative scene,
and the complete set of comparisons is available in the supplement.

9 LIMITATIONS AND FUTURE WORK
We discuss some important aspects of our algorithms, which suggest
limitations and directions for future exploration.

Differentiation in rendering. Compared to a standard primary-
sample-space MCMC renderer, the main additional requirement
of our adaptation algorithms is the ability to compute first-order
gradients of path tracing algorithms. This differentiation function-
ality is becoming standard in modern rendering engines [Anderson

et al. 2017; Che et al. 2018; Li et al. 2018, 2015; Nimier-David et al.
2019; Zhang et al. 2019], which incorporate automatic differentia-
tion [Griewank and Walther 2008] to facilitate both forward and in-
verse rendering. There is additionally active research [Jakob 2019] on
designing automatic differentiation libraries that are better suited to
the computational graphs typical of rendering, compared to general-
purpose libraries such as the one in our implementation [Bell 2015].
These developments suggest that our online adaptation algorithm
can be readily incorporated within modern rendering software,
and potentially offer even bigger performance improvements over
gradient-free algorithms than those reported in Section 8.

Gradient-based sampling in path space. Our algorithms are cur-
rently designed for use only in the primary sample space. This is in
large part due to the mathematical convenience this space provides,
making it amenable to differentiation. Considering the complemen-
tary advantages of sampling techniques operating in the two spaces,
it would be interesting to explore the use of MALA with adaptation
in path space, where gradients have already found some use for sam-
pling near-specular paths [Jakob and Marschner 2012; Kaplanyan
et al. 2014]. As discussed above, this exploration can benefit from
the availability of end-to-end differentiable rendering systems.

Global exploration.We focused on developing small-step perturba-
tion proposals for local exploration, and relied on prior work [Kele-
men et al. 2002] for the large-step mutation proposals needed for
global exploration. As both critically affect rendering performance,
in the future it will be important to research global exploration
techniques that synergize with the local exploration techniques we
developed. One direction is to use the cache of our hybrid method
to additionally facilitate global exploration. A straightforward way
to do this would be to modify the cache to store both gradients and
throughput values f (ū). We could use this information to replace
the uniform large-step mutation proposal Tglobal with one that uses
the cache for importance sampling, for example, by forming a kernel
density estimate of f (ū). This form of cache-driven adaptation for
global exploration can potentially improve rendering performance,
at a negligible overhead (the cache is already used for local explo-
ration) and without affecting ergodicity (the same arguments for
the ergodicity of cache-driven local exploration apply). We show a
proof-of-concept demonstration in Figure 9, where all images are
rendered with the same settings as in Figure 3. We leave a more
detailed investigation, including utilizing learning-based techniques
for path guiding in the primary sample space [Müller et al. 2019;
Reibold et al. 2019; Zheng and Zwicker 2019], for the future.

Parameter setting. As discussed in Section 7, our algorithms re-
quires setting a large number of parameters. Empirically, we ob-
served that some of these parameters (for example, the step size
ϵ) can result in significant deterioration in performance if set in-
correctly. However, we additionally found that selecting parameter
values can be done once, without the need for per-scene fine-tuning:
We coarsely searched for parameter values that produced good per-
formance on a simple scene (ring scene in the supplement), and
then used the same values for all of our experiments. This sug-
gests that users of our implementation should be able to achieve
robust high performance, without the need to change the default
parameter values we provide. In the supplement, we empirically
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Fig. 7. Evaluation of preconditioning schemes for online adaptation: We use the bathroom scene for equal-sample and equal-time comparisons of
diagonal, full, and H2MC preconditioning, combined with online adaptation.

H2MC (hybrid)H2MC (hybrid) Ours (hybrid)Ours (hybrid) Ref.Ref. H2MC (hybrid)H2MC (hybrid) Ours (hybrid)Ours (hybrid)
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equal sample (512 samples-per-pixel) equal-time (10 min)

Fig. 8. Evaluation of preconditioning schemes for hybrid adaptation:
We use the bathroom scene for equal-sample and equal-time comparisons
of diagonal and H2MC preconditioning, combined with hybrid adaptation.
The scene and insets are the same as those in Fig. 7.

w/o global adaptationw/o global adaptation w/ global adaptationw/ global adaptation

MSE: 0.0345MSE: 0.0345 MSE: 0.0188MSE: 0.0188
0 0.3

Fig. 9. Global exploration: Equal-sample (64 samples-per-pixel) render-
ings of the door scene, comparing MALA with hybrid adaptation, without
(left) and combined with (right) cache-driven global exploration (Section 9).

investigate how changing different parameters impacts rendering
performance. An interesting future research direction would be to
use controlled MCMC for online adaptation (during the rendering
process) of parameters towards their scene-specific optimal values.

10 CONCLUSION
We introduced two variants of the Metropolis-adjusted Langevin
algorithm with adaptation that are suitable for MCMC rendering.
For efficiency, our algorithms mimic SGD and employ diagonal pre-
conditioning and momentum, computed using only past gradients
in an online or cache-driven manner. To ensure correctness, our
algorithms are designed using the framework of controlled MCMC.
Put together, these features allow our algorithms to adapt to the
geometry of the primary sample space for local exploration, and
to seamlessly combine with complementary sampling techniques
for global exploration. We have demonstrated that our algorithms
outperform the state-of-the-art in equal-time comparisons, result-
ing in an average MSE improvement of 3× on a variety of scenes,
and 7× on scenes with motion blur. We hope that, as differentiation
support becomes commonplace in rendering systems, our paper and

publicly-available implementation [Luan et al. 2020] will motivate
further research on using gradient-based MCMC for rendering.
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