
Maliva: Using Machine Learning to Rewrite Visualization
Queries Under Time Constraints

Qiushi Bai, Sadeem Alsudais, Chen Li, Shuang Zhao
Department of Computer Science, UC Irvine, CA 92697, USA

{qbai1,salsudai}@uci.edu,{chenli,shz}@ics.uci.edu

ABSTRACT

We consider data-visualization systems where a middleware layer
translates a frontend request to a SQL query to a backend database
to compute visual results. We study the problem of answering a
visualization request within a limited time due to the responsive-
ness requirement. We explore optimization options of rewriting
an original query by adding hints and/or doing approximations
so that the total time is within the time constraint. We develop
a novel middleware solution called Maliva based on machine
learning (ML) techniques. It applies the Markov Decision Process
(MDP) model to decide how to rewrite queries and uses instances
to train an agent to make a sequence of decisions judiciously
for an online request. We give a full specification of the tech-
nique, including how to construct an MDP model, how to train
an agent, and how to use approximation rewriting options. Our
experiments on both real and synthetic datasets show thatMaliva

performs significantly better than a baseline solution that does
not do any rewriting, in terms of both the probability of serving
requests interactively and query execution time.

1 INTRODUCTION

As a powerful way for people to gain insights from data quickly
and intuitively, visualization is becoming increasingly important
in the Big Data era. A common architecture to support data
visualization has three tiers: a backend database, a middleware
layer, and a user-facing frontend. The middleware translates a
visualization request to a query (typically in SQL) to the database
and sends the query answers to the frontend to display. This
architecture is widely used due to its benefits of supporting in-situ
analytics at the data source, and utilizing the database’s built-in
capabilities of efficient storage, indexing, query processing, and
optimization. Responsiveness is critical in these systems [6, 10, 29],
and a request needs to be served within a time budget, e.g., 500𝑚𝑠 .
This requirement is especially challenging when the data volume
is large, and the user request has ad-hoc conditions on attributes
of various types.

In this paper, we study the problem of answering visualiza-

tion requests with a predetermined time constraint. We focus on
middleware-based solutions, with the advantage that they treat
the backend database as a black box without changes, and can
leverage the computing capabilities to do in-situ analytics. We
consider both rewritings that return exact results and rewrit-
ings that return approximate results. As a motivating example,
consider a system that visualizes social media tweets on the US
map with a time constraint of 500𝑚𝑠 . Its backend database has a
tweets table with attributes Content, Location, and CreateAt.

Equivalent rewriting options. Suppose a user asks for a
spatial heatmap of tweets containing the keyword covid on the

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Database

Traditional middleware

SELECT BIN_ID, COUNT(*)
 FROM tweets
WHERE Content contains "covid"
AND Location in ((-124.4, 32.5),
 (-114.1, 42.0))
AND CreateAt on Nov-26-2020
GROUP BY BIN_ID(Location);

(a) The original SQL query takes
3.35𝑠 .

Database

Maliva: ML-based middleware

/*+ Index-Scan(CreateAt) */
SELECT BIN_ID, COUNT(*)
 FROM tweets
WHERE Content contains "covid"
AND Location in ((-124.4, 32.5),
 (-114.1, 42.0))
AND CreateAt on Nov-26-2020
GROUP BY BIN_ID(Location);

(b) A rewritten query with a hint
takes 0.33𝑠 .

Figure 1: Equivalent rewriting option: adding query hints helps the

database compute results within a time budget (500𝑚𝑠).

Thanksgiving day of 2020 in a region. The middleware creates
a SQL query shown in Figure 1(a), which takes 3.35 seconds
to execute. For this query, the physical plan generated by the
database uses the keyword to access the inverted index on the
Content attribute to retrieve candidate records, then filters them
using the other two conditions. If we rewrite the query to an
equivalent query by adding a hint (Figure 1(b)), the rewritten
query takes only 0.3 seconds, as the hint helps the database
generate a more efficient physical plan that uses the temporal
filtering condition to access the B+ Tree index on the CreateAt
attribute.

Approximation rewriting options. Figure 2(a) shows an-
other visualization request on a larger region, which takes at
least 4.28𝑠 for the database to run, no matter what hints we add.
In this case, we rewrite the query by using random sampling,
resulting in an approximation query that takes only 0.45𝑠 to run
(see Figure 2(b)).

Why does the database fail? For the query in Figure 1(a),
there are many reasons the database can fail to generate an effi-
cient plan. One is the estimation error of the query cost due to
an underestimation of the keyword covid’s selectivity. The cost-
estimation problem in optimizers is notoriously hard [31]. For ex-
ample, in our experiments (Section 7), out of the 602 visualization
queries that had at least one physical plan that could finish within
500𝑚𝑠 , PostgreSQL failed to choose an efficient plan for 269
queries due to its cost-estimation errors. Although there are many
higher-accuracy estimators such as [17, 35, 37, 47, 56, 67, 68],
their higher estimation cost prevents them from being adopted
by a general-purpose database to meet the visualization need.
In particular, for OLTP queries that need to be finished within
milliseconds, spending tens of milliseconds for the cost estima-
tion is unacceptable. A key observation is that for visualization
applications where requests come with a time constraint, the

Series ISSN: 2367-2005 157 10.48786/edbt.2023.13

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.13

Database

Traditional middleware

SELECT Id, Location
 FROM tweets
WHERE Content contains "covid"
AND Location in ((-132.6, 27.7),
 (-103.5, 40.0))
AND CreateAt on Nov-26-2020;

(a) The query takes 4.28𝑠 (no hints
can reduce it).

Database

Maliva: ML-based middleware

SELECT Id, Location
 FROM sample_tweets
WHERE Content contains "covid"
AND Location in ((-132.6, 27.7),
 (-103.5, 40.0))
AND CreateAt on Nov-26-2020;

(b) A rewritten query using a sample
table takes 0.45𝑠 .

Figure 2: Approximation rewriting option: rewriting the query to com-

pute an approximate result within the time constraint.

middleware can afford to spend more time (e.g., 300ms) on the
cost-estimation using the high-accuracy estimators to find effi-
cient plans (e.g., within 50ms), while it can still answer requests
within a given time constraint (e.g., 500ms).

Challenges.Wemay enumerate all possible rewritten queries
by applying different hints to a given query. We then use one of
the aforementioned query-time estimators (łQTEž for short) to
estimate the execution time of these rewritten queries and choose
the most efficient one. There are several challenges in using this
approach in the context of interactive visualization. (C1) A main
challenge is that the cost of estimating the execution time of a
rewritten query can be significant given a tight time constraint.
For example, in Bao [35], estimating the execution time of all
rewritten queries for one original query can take up to 230𝑚𝑠

in their experiments. (C2) Another challenge is the uncertainty
caused by the estimation error of the QTE, and the fact that
the backend database may or may not follow the provided hints
to generate a physical plan. (C3) The third challenge is quality.
For queries without equivalent rewritten queries that can meet
the time constraint, approximate rewriting options need to be
explored. It is critical to maximize the quality of the result while
ensuring the query time is within the time constraint.

We address these challenges by introducing a novel machine-
learning-based technique calledMaliva, which stands for łMa-
chine Learning for Interactive Visualization.ž The technique for-
mulates themiddleware task as aMarkovDecision Process (MDP).
For a given time budget, we train an MDP agent to balance the
planning time and the execution time of the rewritten queries. By
learning from previous experiences, the MDP agent judiciously
explores different rewriting options, so that the total time (includ-
ing planning and query execution) is within the time limit. (We
address challenge C1 in Section 4.) Using reinforcement learning
to train the models, Maliva can handle the uncertainties intro-
duced by the inaccurate time estimation and the fact that the
database could ignore the query hints. (We address challenge C2
in Section 5.) By considering visualization qualities of rewritten
queries in the reward design of the MDP model,Maliva makes
the best effort to maximize the result’s quality while ensuring the
query time is within the time limit. (We address challenge C3 in
Section 6.) Our experiments show thatMaliva has a much higher
chance (70×) than the original query to generate an execution
plan such that the total time is within a time limit. Interestingly,
it can also reduce query execution time. Both improvements

show the significant benefits of adding learning capabilities to
the middleware to support responsive visualization.

The rest of the paper is organized as follows. After formulating
the middleware query-generation problem in Section 2, we give
an overview of Maliva in Section 3. We present the details of
this MDP-based solution, including its states, actions, transitions,
and rewards (Section 4). We present how Maliva trains an MDP
agent offline and uses it to generate a rewritten query online
(Section 5). We generalize the MDP-based solution to be quality-
aware by considering approximation rewriting (Section 6). Lastly,
we report the results of a thorough experimental evaluation of
Maliva to show its performance and benefits (Section 7).

1.1 Related Work

Visualization is a broad topic studied in many communities, and
here we focus on efficiency-related works. A survey [15] summa-
rized studies on interactive data analytics and visualization, and
there are several recent studies on this topic [22, 24, 26, 50].

Approximate Query Processing (AQP). There are many tech-
niques for computing approximate answers to queries [7, 12,
16, 27, 41, 45, 46, 48, 52, 62, 72, 73]. These approaches focus on
developing approximation solutions to compute high-quality
visualization. Existing solutions can be adopted as approxima-
tion rules in Maliva, such as Sample+Seek [12], which generates
error-bounded visualization results by running queries on a small
sample table.

Datacube-based approaches. Related studies include [10, 11,
21, 23, 28, 30, 40, 65]. In these approaches, the predefined cube
intervals cannot support visualization queries with arbitrary nu-
merical range conditions. The proposedMaliva system efficiently
computes results for visualization queries with arbitrary conjunc-
tive selection conditions.

Progressive visualization. There are solutions to show visual-
ization results progressively [7, 9, 10, 14, 20, 39]. For instance,
DICE [10] uses random and stratified samples to present an ap-
proximate result and then incrementally updates the result. These
progressive visualization systems can adopt the proposedMaliva

middleware to further optimize the intermediate queries to in-
crease their efficiency.

Prefetching-based approaches. Techniques including [1, 5, 53,
69] accelerate visualization queries by prefetching or caching
their results. For example, ForeCache [5] divides visualizations
into tiles and prefetches them based on predicted user behaviors.
Maliva is orthogonal to these techniques, and it can be adopted
by them to further optimize the database queries.

Visualization using big data systems. These techniques use
Hadoop, Spark, andHive to support visualizations [7, 8, 13, 58, 70].
For instance, HadoopViz [13] and GeoSparkViz [70] use Hadoop
and Spark to generate high-resolution visualizations. Their focus
is on offline construction, not on an interactive visualization for
queries with ad-hoc conditions. The proposedMalivamiddleware
technique is complementary to these solutions.

ML for visualization. A survey by Wang et al. [63] summarized
studies of applying ML techniques to different stages during
the whole visualization pipeline. Examples are [32, 64] for data
cleaning and preparation and [19, 33, 51] for visualization rec-
ommendation. Our proposed system focuses on applying ML
techniques to solve performance issues at the middleware.

ML-based query optimization.ML has recently used in database
optimizers [25, 35ś37, 54, 61, 71], selectivity estimation [17, 47],
and cost estimation [56]. Comparison with Bao: The recent

158

Bao technique [35] uses hints to generate optimized queries by
modeling the optimization as a multi-armed bandit problem. It
applies Thompson sampling to minimize the training time and
maximize the accuracy of its neural-network-based query time
estimator (QTE). We have a detailed discussion about the differ-
ences betweenMaliva and Bao in Section 6.3. We also conducted
extensive experiments in Section 7 to compare their performance,
and the results showMaliva outperformed Bao in various metrics
(See Section 7.6).

2 PROBLEM FORMULATION

Visualization architecture. We consider a typical three-tier
data-visualization system that consists of a backend database, a
middleware layer, and a frontend. For each frontend visualization
request, let 𝑄 be the original SQL query for the request. Let 𝜏
be a time limit that quantifies the expected responsiveness of
the system. Ideally, we want the total delay, from the time the
user submits a request to the time the result is shown on the
frontend, to be within 𝜏 . The original query 𝑄 may not meet
the time-limit constraint when the backend database cannot
generate a physical plan that is fast enough. To solve this problem,
Maliva rewrites 𝑄 with two kinds of options: query hints and
approximation rules. By adding a query hint to 𝑄 , Maliva can
help the backend database generate an efficient physical plan
that computes the result within the time limit. For expensive
queries where no physical plan can meet the time limit,Maliva

can add an approximation rule to the original query such that the
backend database computes an approximate result to trade the
visualization quality for responsiveness. Note that the proposed
approach also works in a more general setting of approximate
query processing (AQP) where a time constraint is given.

Query hints. A query hint in a database is an addition to
the SQL standard that instructs the database engine on how to
execute the query. For example, a hint may tell the engine to
use or not to use an index (even if the query optimizer would
decide otherwise) [18]. A query hint does not change the se-
mantic meaning of the query, i.e., the result computed by the
database engine with the hint remains the same. Databases such
as AsterixDB [2], MySQL [42], Oracle [44], PostgreSQL [49], and
SQL Server [55] support a variety of query hints. For example, in
Figure 3(b),Maliva adds two hints + Index-scan(t CreateAt) and
Nest-Loop-Join(t u) to the original query. They suggest the engine
to use the index on the CreateAt attribute to scan the table t,
and do a nest-loop join on tables t and u.

(a) Original Query (Q)

SELECT BIN_ID, COUNT(∗)

FROM tweets t, users u

WHERE t.Content contains "covid"

AND t.Location in ((-124.4, 32.5),

(-114.1, 42.0))

AND t.CreateAt on 'Nov-26-2020'

AND u.TweetCnt in [100, 5000]

AND t.user_id = u.id

GROUP BY BIN_ID(t.Location);

(b) Rewritten Query (RQ)

/∗+ Index−scan(t CreateAt),

Nest−Loop−Join(t u) ∗/

SELECT BIN_ID, COUNT(∗)

FROM tweetsSample20 t, users u

WHERE t.Content contains "covid"

AND t.Location in ((-124.4, 32.5),

(-114.1, 42.0))

AND t.CreateAt on 'Nov-26-2020'

AND u.TweetCnt in [100, 5000]

AND t.user_id = u.id

GROUP BY BIN_ID(t.Location);

Figure 3: A original query and a rewritten query.

Approximation rules. An approximation rule is a method to
rewrite the original SQL query to compute an approximate result,

and the new query takes less time. There are various approxima-
tion rules available in database systems, such as adding a łLimitž

clause, applying a SQL-standard łTableSamplež operator on a
table, or substituting a table with a smaller table randomly sam-
pled from the original table. For example, in Figure 3(b), Maliva

rewrites the original query by substituting the table tweets with
a sample table tweetsSample20 with 20% randomly selected
records.

Now we formally define rewriting options, rewritten queries,
and the query-rewriting problem.

Definition 2.1. (Rewriting Option) Let𝐻 be a set of query-hint
sets and𝐴 be a set of approximation-rule sets. A rewriting option
(łROž for short) is a tuple (ℎ, 𝑎), where ℎ ∈ 𝐻 and 𝑎 ∈ 𝐴. Note
that both ℎ and 𝑎 can be the empty set ∅.

For instance, the rewriting option in Figure 3(b) is a tuple with
a query-hint set of łuse the index on CreateAt and do a nest-loop
join on t and už and an approximation-rule set of łsubstituting
the table tweets with the sample table tweetsSample20ž. We
assume the user-defined candidate set of rewriting options does
not contain invalid query-hint sets or approximation rules. A
query-hint set is considered to be invalid if it contains conflicting
hints, e.g., Nest-Loop-Join(t u) and Hash-Join(t u).

Definition 2.2. (Rewritten Query) Given an original SQL query
𝑄 and a rewriting option 𝑅𝑂 , a rewritten query (łRQž for short)
is a new SQL query generated by applying 𝑅𝑂 onto 𝑄 . If 𝑅𝑂 =

(∅, ∅), then 𝑅𝑄 = 𝑄 .

For example, Figure 3(b) is a rewritten query for the original
query in Figure 3(a).

Query-rewriting problem. Given a visualization request’s
original SQL query 𝑄 , and a time limit 𝜏 , we want to generate a
rewriting option, such that the total time of the corresponding
rewritten 𝑅𝑄 , including planning and query execution, is within
𝜏 and the quality of 𝑅𝑄’s result is maximized. To quantify the
quality, we assume a given visualization quality function 𝐹 . Let
𝑟 (𝑄) be the result of the original query𝑄 and 𝑟 (𝑅𝑄) be the result
of the rewritten query 𝑅𝑄 . Then 𝐹 (𝑟 (𝑄), 𝑟 (𝑅𝑄)) computes the
quality of 𝑟 (𝑅𝑄).

In Sections 3, 4, and 5, we study the case of using query hints
only (i.e., without changing query results). In Section 6, we study
the case where approximation rules are also used.

3 MALIVA: ML-BASED QUERY REWRITING

We now introduce the middleware technique called łMalivaž to
solve the aforementioned query-rewriting problem. We first give
an overview of the technique, then use an example to explain the
details.

Overview. As illustrated in Figure 5, Maliva rewrites the
original SQL query to answer a visualization request within a
time budget. It considers a predefined set of rewriting options,
which we denote as Ω = {𝑅𝑂1, . . .}. For each 𝑅𝑂𝑖 , the rewritten
query is denoted as 𝑅𝑄𝑖 . The set of candidate rewritten queries
is Φ = {𝑅𝑄1, . . .}.

Maliva has a Query Rewriter that enumerates possible RQs and
uses a Query Time Estimator (QTE) to estimate the execution time
of each of them. The Query Rewriter uses the best effort to choose
an RQ such that the total time, including the planning process
and query execution, is within the time budget 𝜏 . Such an RQ is
called viable. The middleware then sends the rewritten query to
the database. The Query Result Handler sends the retrieved result
to the frontend to visualize.

159

0 30 90 150 Time (ms)

RQ Index on
Content

Index on
CreateAt

Index on
Location

RQ0 ✘ ✘ ✘
RQ1 ✘ ✘ ✓
RQ2 ✘ ✓ ✘
RQ3 ✘ ✓ ✓
RQ4 ✓ ✘ ✘
RQ5 ✓ ✘ ✓
RQ6 ✓ ✓ ✘
RQ7 ✓ ✓ ✓

RQ Estimation
Cost

Estimated
Time

RQ1 30 1300
… … …

RQ5 60 N/A
… … …

RQ7 120 N/A

RQ Estimation
Cost

Estimated
Time

RQ1 25 N/A
… … …

RQ5 90 N/A
… … …

RQ7 150 N/A

RQ Estimation
Cost

Estimated
Time

RQ1 30 1300
… … …

RQ5 60 1000
… … …

RQ7 60 N/A

* Hint of using (✓) or not using (✘) index in a rewritten query.Agent

450Estimate
RQ1

Estimate
RQ5

Estimate
RQ7 Run RQ7

Figure 4: The Query Rewriter acts like an agent who makes a sequence of decisions to generate a rewritten query (with a total time ≤ 500𝑚𝑠). At time

0, the agent considers rewritten query 𝑅𝑄1 due to its low estimation cost (estimated 25𝑚𝑠 , the actual 30𝑚𝑠 is updated once 𝑅𝑄1 is explored). After

estimating its execution time (1, 300𝑚𝑠), the agent knows that 𝑅𝑄1 is not viable since the total time is longer than 500𝑚𝑠 . The estimation of 𝑅𝑄1 affects

the costs for estimating 𝑅𝑄5 and 𝑅𝑄7. The agent explores 𝑅𝑄5 and then 𝑅𝑄7. With the estimated execution time being 300𝑚𝑠 and the elapsed time

being 150𝑚𝑠 , 𝑅𝑄7 is decided as a viable rewritten query because the total time (450𝑚𝑠) is within 500𝑚𝑠 .

Frontend Maliva-based Middleware

MDP-based Query Rewriter

Database

Rewritten
Query

RQi

 Estimated
Time
of RQi

…

Statistics

Query Results Handler
Results

Visualization

Request

Visualization

Results

 Query Time Estimator

Rewritten

Query

Data

Figure 5: Overview of Maliva.

Naïvely enumerating all available RQs in Φ is computationally
prohibitive due to two reasons. First, the cost of Query Time

Estimator to estimate the execution time of a rewritten query
is not negligible. For instance, in some cases it could take up
to 70𝑚𝑠 [56] on a 7𝐺𝐵 dataset or 300𝑚𝑠 [67] on a 10𝐺𝐵 dataset.
Second, the number of RQs increases exponentially when the
number of applicable indexing choices increases. For example,
consider a selection query on a table with filtering conditions on
𝑚 attributes, and the database has an index on each attribute. The
number of query-hint sets in 𝐻 would be 2𝑚 , since the database
can use any subset of the 𝑚 indexes to do filtering and then
intersect the record lists to compute the final result. Therefore,
the Query Rewriter needs to balance the exploration time for
query estimation and the execution time of each chosen RQ to
find a viable RQ.

An example.Maliva views query rewriting as a Markov de-
cision process (MDP) [57] and adopts machine learning (ML) to
solve this problem. We use the running example in Section 1 to
illustrate how Maliva uses an MDP agent to make a sequence
of decisions to find a viable RQ. For simplicity, we assume the
rewrite-options (RO) set to involve query hints only. We will gen-
eralize the technique to consider approximation rules in Section 6.
As shown in Figure 4, a query has three selection conditions on
three attributes, and each of which has an index. Suppose in
the set 𝐻 of query-hint sets, each attribute has a query hint of
using or not using the index. Thus, we have 23 = 8 query-hint
sets to choose from. The agent makes a sequence of decisions to
estimate the execution times of several rewritten queries and find
a viable one 𝑅𝑄7 (that uses the indexes on all three attributes).
Next, we present the details of this MDP-based technique.

4 MDP MODEL FOR ADDING QUERY HINTS

In this section, we present the details of using an MDP model in
Maliva to solve the query-rewriting problem and discuss how to
implement the Query Time Estimator (QTE).

4.1 MDP Model for Query Rewriting

MDP [57] is a formalization of sequential decision-making prob-
lems where an agent learns to achieve a goal from interaction
with an environment. At each time step, the agent is in a state
𝑠 , and chooses an action 𝑎 available in state 𝑠 . The environment
transits the agent to a new state 𝑠 ′, and gives the agent a corre-
sponding reward 𝑅(𝑠, 𝑎). To train an MDP agent is to find a good
policy 𝜋∗ such that if the agent follows the policy to choose an
action for each state, it maximizes the total reward.

We use the MDP model to solve the query-rewriting problem.
For simplicity, we first focus on the case where rewriting options
do not contain any approximation rules, which means no rewrit-
ten queries have quality loss. We will generalize the technique to
consider approximation rules in Section 6. Without considering
quality loss, the MDP agent learns to maximize the chance of
finding a viable rewritten query for a given visualization request.
The agent takes a sequence of actions, and each action chooses
an RQ to explore. That is, it asks the query time estimator (QTE)
to estimate the execution time of the RQ. The agent chooses an
RQ based on the current state, and considers the future cost it
needs to pay and the execution time of RQs already explored.
The agent gets a bonus if it finds a viable RQ, or a penalty if it
runs out of time. In the offline phase, by analyzing queries in
the training workload, the agent learns to maximize the chance
to receive a bonus. In the online processing phase, given a new
query, the agent decides which RQ to explore in each step to
receive a bonus in the end. Now we present the details of how to
use MDP to model the process of choosing RQs.

States. A state represents the past decisions, based on which
the agent decides an RQ to consider next. Suppose we are given
a predefined set of 𝑛 ROs, i.e., Ω = {𝑅𝑂1, . . . , 𝑅𝑂𝑛}. Correspond-
ingly, we have 𝑛 candidate RQs, denoted as Φ = {𝑅𝑄1, . . . , 𝑅𝑄𝑛}.
A state is a vector

𝑠 = (𝐸,𝐶1,𝐶2, . . . ,𝐶𝑛,𝑇1,𝑇2, . . . ,𝑇𝑛),

which includes three pieces of information, as shown in Figure 6.
(1) The elapsed time (𝐸) captures how much time we have spent.
(2) The estimation cost (𝐶𝑖) for each possible rewritten query
𝑅𝑄𝑖 captures how much time is needed for the agent to estimate

160

its running time. Each 𝐶𝑖 is initialized with a rough estimation
collected offline and updated during the online planning phase.
Note that the MDP state does not require the initial 𝐶𝑖 values
to be accurate, and a rough estimation from history statistics
suffices. The actual estimation costs will be collected while the
MDP agent processes a query, as will be described soon in the
definition of Transitions. (3) 𝑇𝑖 is the estimated time for each
already explored 𝑅𝑄𝑖 . Each 𝑇𝑖 is initialized with a 0 value until it
is filled with an estimated execution time.

Estimation cost
…

…

Elapsed
time

Estimated time
…

…State

Figure 6: An MDP state in Maliva.

We assume for each rewritten query 𝑅𝑄𝑖 , collecting the phys-
ical plan and its statistics (e.g., cardinality and cost estimations
of each operator) is done by the QTE, and its time is captured by
the MDP model’s estimation cost (𝐶𝑖). We assume the rewritten
queries’ physical plans and statistics are not available to the MDP
model. Thus, the proposed MDP model is general, and can be
applied to any query shape with any predefined query-hint set. A
natural question is that without the statistics of the explored RQs
stored in the state, how can the MDPmodel make a good decision
on which RQ to choose next? Our answer is that the execution
time of a rewritten query implicitly captures the statistics of the
physical operators (e.g., the cost of doing an R-Tree index scan on
the Location attribute). By keeping the estimated execution time
of each explored RQ in its state, the MDP model can learn the
correlations of the execution times between different rewritten
queries and make good decisions.

Actions. An action, denoted as 𝑎, is to explore an RQ next.
For each RQ, the agent asks the QTE to estimate its execution
time. Meanwhile, the agent needs to pay a cost as it takes time
for the QTE to extract query features, possibly by collecting
online statistics from the database, and running the estimation
model to do the estimation. In the running example, at time 0,
the agent decides to explore 𝑅𝑄1. It asks the QTE to estimate
𝑅𝑄1’s execution time.

Transitions. A transition function defines how the environ-
ment computes the next state, given the agent’s action in the
current state. Let the RQ considered by action 𝑎 in state 𝑠 be 𝑅𝑄𝑖 .
We define the transition function T as follows. First, the QTE
estimates the time of 𝑅𝑄𝑖 , and we add the estimated time𝑇𝑖 to the
state. Second, the estimation costs for other RQs could change.
In the running example, to estimate 𝑅𝑄1 that uses the R-Tree
index on the Location attribute, we need to collect the spatial
filtering condition’s selectivity on the Location attribute. To
estimate 𝑅𝑄5 that uses both the inverted index on the Content
attribute and the R-Tree index on the Location attribute, we need
to collect the selectivity values of the filtering conditions on both
attributes. After the agent takes the 𝑅𝑄1 action, we update the
estimation cost of 𝑅𝑄1 to be the actual time it costs and update
the estimated estimation cost of 𝑅𝑄5 by excluding the cost to
collect the selectivity value of the spatial filtering condition. As
shown in Figure 7, after estimating the time of 𝑅𝑄1, we add the
estimated time 1, 300𝑚𝑠 of 𝑅𝑄1 to the state, update the estimation
cost for 𝑅𝑄1 from the estimated 25𝑚𝑠 to the actual 30𝑚𝑠 , and
update the estimation cost for 𝑅𝑄5 from the previous estimated
90𝑚𝑠 to the new estimated 60𝑚𝑠 . Lastly, the estimation takes time

𝐶𝑖 , and we add it to the elapsed time so far to indicate how much

time the agent has spent exploring different RQs. Note that the

𝐶𝑖 is the actual cost of estimating 𝑅𝑄𝑖 , which could be different
from 𝐶𝑖 because 𝐶𝑖 is an estimated cost for estimating 𝑅𝑄𝑖 .

 Query Time Estimator

Database

Selectivity on
Content

Selectivity on
CreateAt

Selectivity on
Location

N/A N/A 0.0083

cost=30mscost=60ms

=1300ms

Estim
ate

0

Estimation cost

25 …

Elapsed
time

Estimated time

0 0

…

…

… …

90 …

…

…

30 30 … 1300 0…

State

60 … …

Tr
an

si
t t

o

Figure 7: Transition after estimating execution time of 𝑅𝑄1.

Rewards. A reward function defines the agent’s immediate
gain when it takes a particular action 𝑎 in a given state 𝑠 . In
our setting, consider two cases to compute the reward function.
(1) The first case is when the agent is at an intermediate state
where it still has time for planning but has not yet found a viable
rewritten query. In this case, the agent should not be awarded or
punished since it has not made a decision yet. Thus the reward
value is 0. (2) The second case is when the agent is at a termination

state where it decides the rewritten query ˆ𝑅𝑄 , runs it against the

database, and collects the execution time 𝑇 of ˆ𝑅𝑄 . In this case,
the agent should be awarded if the total time (including both the
planning time and rewritten query execution time) is less than
the time budget, or punished if the total time is more than the
budget.

The agent decides on a rewritten query by considering three
situations. The first one is that the agent finds an RQ to be viable
based on the estimation of the QTE before running out of time.
For example, in Figure 4, after spending 150𝑚𝑠 for planning,
the agent decides 𝑅𝑄7 as the chosen rewritten query, since the
predicted total time of 𝑅𝑄7 is 450𝑚𝑠 , which is within the 500𝑚𝑠

budget. The second situation is when the agent uses up the time
budget and has to stop planning. The third situation is when the
agent has exhausted all candidate rewritten queries and has to
decide which RQ to choose. In the latter two situations, the agent
chooses the fastest RQ known so far as the final decision.

Formally, suppose the generated rewritten query by the agent

is ˆ𝑅𝑄 and the actual running time of query ˆ𝑅𝑄 is 𝑇 . Then the
reward function R(𝑠, 𝑎) is defined as follows,

R(𝑠, 𝑎) =
(𝜏 − 𝑠 .𝐸 −𝑇)

𝜏
, (1)

where 𝑠 .𝐸 denotes the elapsed time so far in state 𝑠 . If the total

time 𝑠 .𝐸 +𝑇 is less than the time budget 𝜏 , which makes R(𝑠, 𝑎)
positive, then the agent receives a reward. The faster the rewritten
query is, the larger the reward will be. On the other hand, if the
total time exceeds the time budget, which makes R(𝑠, 𝑎) negative,
then the agent receives a penalty. The slower the rewritten query
is, the larger the penalty will be. Thus, guided by the reward
function, the MDP model will learn to find an efficient rewritten
query as soon as possible.

161

4.2 Query Time Estimator (QTE)

Take the sampling-based QTE described in [67] as an example. It
first builds an analytical cost model (e.g., linear regression model),
and uses it to estimate the execution time of a rewritten query
by collecting its statistics online. Specifically, it estimates the
selectivity values of the query conditions by running count(*)

queries on a small sample table, provides the values as input
features to the cost model, and uses the model’s prediction as the
query’s execution-time estimation. There are also other possible
solutions in the literature [37, 56, 68] that can be used by Maliva.
Note that QTEs are the focus of this paper, and Maliva leverages
a given QTE intelligently to balance the planning time and the
query execution time.

5 TRAINING AND USING THE MDP AGENT

In this section, we discuss how to train the MDP agent offline
inMaliva on a workload of visualization requests and use it to
generate a viable rewritten query online.

5.1 Training the MDP Agent

Suppose we have a workload of queries𝑊 = [𝑞1, 𝑞2, . . . , 𝑞𝑚].
Our goal is to find an optimal policy 𝜋∗ such that for any query
𝑞𝑖 ∈𝑊 , the agent following policy 𝜋∗ maximizes the chance to
generate a viable rewritten query. We adopt the deep Q-learning
algorithm [38] for finding an optimal policy for the MDP agent.
Its main idea is to use a neural network (called Q-network) to
represent a policy 𝜋 . Given an input of a state vector, the q-
network outputs a Q-value [66] for each possible RQ in the state.
A higher q-value means that the rewritten query is more likely
to be viable given the current information. More details of the Q-
network design can be found in the full version of this paper [3].
Its training process includes two main steps. The first step is
to generate a set of experiences by exploring different planning
sequences for queries in the workload repeatedly. The second is
to replay those experiences to update the q-network’s weights
gradually such that the q-network can approximate the q-values
of the optimal policy for each state-action pair.

Training an MDP agent for query rewriting. Algorithm 1
details how we train the MDP agent. To apply deep q-learning,
we generate the replay memory 𝑀 of experiences. For a given
visualization query workload𝑊 = [𝑞1, 𝑞2, . . . , 𝑞𝑚], we generate
a set of experiences. Each experience is a 4-tuple

(𝑠, 𝑎, 𝑠 ′, 𝑟 ′),

where the agent in a state 𝑠 estimates the time of the hinted
query represented by an action 𝑎 and observes the next state 𝑠 ′

with a reward 𝑟 ′. Note that different queries can have different
optimal policies. Our goal is to learn an optimal policy for the
whole workload. We let the agent explore all the queries in the
workload𝑊 in multiple iterations until the policy converges
or the number of runs exceeds a maximum threshold. In each
iteration, we shuffle the order of queries to reduce the bias caused
by earlier queries on the exploration direction of later queries.
For each query 𝑞 in𝑊 , we let the agent complete a sequence of
decisions. At each step, it selects an RQ to estimate. It pays the
cost to estimate the rewritten query’s execution time, transits
to the next state, and receives an immediate reward. The agent
repeats the process until it reaches a termination state (line 9) in
one of the three cases. The first case is when the estimated time
𝑇 (𝑎) of the rewritten query in action 𝑎 suggests it is potentially
viable, i.e., 𝑠 .𝐸 + 𝑇 (𝑎) ≤ 𝜏 . The second case is when the agent

Algorithm 1: Training an MDP agent

Input: A query workload𝑊 = [𝑞1, 𝑞2, . . . , 𝑞𝑚]

A transition function T
A reward function R
A time budget 𝜏

Output: An agent’s policy 𝜋

1 Replay memory𝑀 ← {} with capacity C;

2 Initialize policy 𝜋 with random weights;

3 while 𝜋 does not converge do

4 𝑊 ← shuffle the queries in𝑊 ;

5 for each query 𝑞 in𝑊 do

6 State 𝑠 ← (0,𝐶1,𝐶2, . . . ,𝐶𝑛, 0, 0, . . . , 0);

7 Remaining set 𝜌 ← query 𝑞’s all possible RQs

{𝑅𝑄1, 𝑅𝑄2, . . . , 𝑅𝑄𝑛};

8 Reward 𝑟 ← 0;

9 while (𝑠 , 𝜏 , 𝜌) is not at a termination state do

10 𝑓 ← generate a random number from [0,1];

11 if 𝑓 < 𝜖 then

12 𝑎← a random RQ from 𝜌 ;

13 else

14 𝑎← argmax𝑅𝑄𝑖 ∈𝜌
Q𝜋 (𝑠, 𝑅𝑄𝑖);

15 end

// Estimate query 𝑎 and transit to state 𝑠 ′

16 𝑠 ′← T (𝑠, 𝑎);

// Compute the immediate reward

17 𝑟 ′← R(𝑠, 𝑎);

18 Store experience tuple (𝑠, 𝑎, 𝑠 ′, 𝑟 ′) in𝑀 ;

// Remove query 𝑎 from the remaining set 𝜌

19 𝜌 ← 𝜌 − {𝑎}; 𝑠 ← 𝑠 ′; 𝑟 ← 𝑟 ′;

20 end

21 Update 𝜋 using a random sample from𝑀 ;

22 end

23 end

runs out of time, i.e, 𝑠 .𝐸 ≥ 𝜏 . The third case is when the agent
has exhausted all possible RQs, i.e., 𝜌 = ∅.

When the agent decides which RQ to explore at each step
(lines 12 to 14), we adopt an 𝜖-greedy strategy [38, 59] to balance
between the exploration of RQs with uncertain values and the
exploitation of RQs known with high values. With an 𝜖 probabil-
ity, the agent chooses a random RQ that has not been considered
before (line 12). Otherwise, it selects an RQ that has not been
explored with the highest q-value based on the current policy
weights (line 14). We start with a high probability (𝜖) of explo-
ration and gradually decrease it to favor exploitation with the
training progress.

Once an RQ is decided by the agent as an action 𝑎, we call
the transition function T (Section 4.1) to transit the agent to the
next state 𝑠 ′ (line 16). We estimate the query 𝑎’s running time
and update the new state 𝑠 ′ by adding the estimated time for 𝑎,
adding the cost to the elapsed time, and modifying the costs of
affected RQs. We then call the reward function R (Section 4.1)
to compute an immediate reward 𝑟 ′ for estimating the RQ in 𝑎

(line 17). To this end, we have generated a new experience tuple
(𝑠, 𝑎, 𝑠 ′, 𝑟 ′), and store it in the replay memory𝑀 (line 18). When
𝑀 reaches its capacity C, we replace existing experiences in a
FIFO manner.

After processing a query, we update the policy 𝜋 following
the original deep q-learning algorithm [38] (line 21). We sample

162

a random subset𝑀 ′ of experiences from𝑀 . For each experience
tuple (𝑠, 𝑎, 𝑠 ′, 𝑟 ′) in𝑀 ′, we first compute the target q-value 𝑦 of
the state-action pair (𝑠, 𝑎) using the Bellman equation [66]. We
then update the weights in policy 𝜋 by minimizing the loss value
𝐿 between the target q-value 𝑦 and the current q-value, where 𝐿
is defined as:

𝐿 = (Q𝜋 (𝑠, 𝑎) − 𝑦)2 .

We keep updating the policy 𝜋 until it converges, i.e., the total
accumulated reward of the training workload𝑤 does not improve
much in new iterations (e.g., less than 1%).

Accommodating estimation inaccuracy usingMDP.One
advantage of using the MDP framework where an approximate
QTE may give inaccurate estimations is its tolerance of the inac-
curacy. The MDP model captures the uncertainty in two places.
One is the transitions between states that store the estimated
times of explored RQs. Although estimated times can have errors,
statistically, after learning from the historical queries, the agent
understands which action has the highest expected total reward.
Another place is the reward definition, where the penalty for
making a wrong decision will lead the agent to understand the
QTE’s mistakes and avoid them in the future.

5.2 Using MDP to Rewrite Queries Online

After we train an MDP agent, the query rewriter utilizes the
agent to generate a rewritten query for a new visualization query
𝑞 online. Algorithm 2 shows the pseudo-code. Starting from an
initial state 𝑠 , we use the trained policy 𝜋 to compute the q-values
for all the RQs and select the one with the highest q-value as the
action 𝑎 (line 5). We then estimate the running time of query 𝑎
and transit to state 𝑠 ′ (line 6). We compute the immediate reward
𝑟 ′ for estimating RQ in 𝑎 (line 7). If the action 𝑎 is a potentially-

viable RQ (line 9), we output the query ˆ𝑅𝑄𝑖 in 𝑎 as the generated
rewritten query. Otherwise, we run out of time for the remaining
RQs (line 11). Then we select the rewritten query 𝑅𝑄 𝑗 with the
minimum execution time estimated so far and output it. If neither
cases happen, we repeat the above process.

6 APPROXIMATION REWRITING OPTIONS

In this section, we generalize Maliva by considering rewriting
options with approximation rules. Recall that using a query-
hint set to rewrite an original query 𝑄 into an 𝑅𝑄 can help the
database generate an efficient physical plan that computes the
actual result without any approximation. However, for expensive
queries where no physical plan can meet the time constraint, by
applying an approximation-rule set to 𝑄 , Maliva can generate
an 𝑅𝑄 that efficiently computes an approximate result within
the time budget. We first extend the MDP model in Section 4 to
consider approximation rules. We then discuss two approaches
to applying the MDP model to implement a quality-aware query
rewriter. The quality-aware query rewriter makes the best effort
to generate a viable rewritten query and maximize the result’s
quality. In the end, we discuss the trade-offs between the two
approaches.

6.1 Quality-Aware MDP Model

Consider the case where the rewriting options contain both query
hints and approximation rules. A rewritten query can return an
approximate result with quality loss. We need to let the MDP
agent learn to maximize the chance to generate a viable rewritten
query and maximize the quality of the query result simultane-
ously. To quantify the quality of a rewritten query, we assume

Algorithm 2: Generating an RQ online

Input: A new query 𝑞
A trained policy 𝜋

A transition function T
A reward function R
A time budget 𝜏

Output: An RQ
1 State 𝑠 ← (0,𝐶1,𝐶2, . . . ,𝐶𝑛, 0, 0, . . . , 0);

2 Remaining set 𝜌 ← query 𝑞’s all possible RQs

{𝑅𝑄1, 𝑅𝑄2, . . . , 𝑅𝑄𝑛} ;

3 Reward 𝑟 ← 0;

4 while 𝑇𝑟𝑢𝑒 do

// Select a query with the highest q-value predicted by 𝜋

5 𝑎← argmax𝑅𝑄𝑖 ∈𝜌
Q𝜋 (𝑠, 𝑅𝑄𝑖);

// Estimate query 𝑎 and transit to state 𝑠 ′

6 𝑠 ′← T (𝑠, 𝑎);

// Compute the immediate reward

7 𝑟 ′← R(𝑠, 𝑎);

// Remove query 𝑎 from the remaining set 𝜌

8 𝜌 ← 𝜌 − {𝑎};← 𝑠 ′; 𝑟 ← 𝑟 ′;

9 if 𝑠 .𝐸 +𝑇 (𝑎) ≤ 𝜏 then

10 return ˆ𝑅𝑄𝑖 represented by 𝑎;

11 if 𝑠 .𝐸 ≥ 𝜏 or 𝜌 = ∅ then

12 return 𝑅𝑄 𝑗 with the minimum execution time

estimated in 𝑠;

13 end

a given visualization quality function 𝐹 . Let 𝑟 (𝑄) be the result
of the original query 𝑄 , and 𝑟 (𝑅𝑄) be the result of the rewritten
query 𝑅𝑄 . Then 𝐹 (𝑟 (𝑄), 𝑟 (𝑅𝑄)) computes the quality of 𝑟 (𝑅𝑄).
For example, suppose we use the Jaccard similarity function to
measure the quality of an approximate result. Figure 8 shows
that the quality of the scatterplot visualization result of an ap-
proximate rewritten query 𝑅𝑄 compared to the original query
𝑄 is 0.76. Note that Maliva does not have restrictions on quality
functions, and many functions can be used, such as VAS in [45]
for scatterplots and the function of distribution precision in [12]
for pie charts.

/*+ Index-scan(t CreateAt) */
SELECT Id, Location
 FROM tweetsSample60 t
WHERE Content contains "covid"
 AND Location in ((-132.6, 27.7),
 (-103.5, 40.0))
 AND CreateAt in Nov-2020;

SELECT Id, Location
 FROM tweets t
WHERE Content contains "covid"
 AND Location in ((-132.6, 27.7),
 (-103.5, 40.0))
 AND CreateAt in Nov-2020;

Figure 8: The quality of 𝑅𝑄 compared to𝑄 using a Jaccard-based quality

function as an example.

Reward function for a quality-aware MDP model. To
achieve the goal of guiding the MDP agent to learn to maximize
the chance to generate a viable rewritten query and maximize
the quality of the query result simultaneously, we extend the
definition of the reward function in Section 4. Recall that the
learning goal of an MDP agent is to maximize the accumulative
reward. In Section 4, once the agent decides on a rewritten query,

163

it receives a reward that reflects the query performance in terms
of the total running time. Guided by the reward, the agent learns
to generate a viable rewritten query quickly. Similarly, the MDP
agent can also learn to quickly generate a viable rewritten query
with a high result quality if the final reward reflects both the
decided rewritten query’s efficiency and quality. The main idea is
to combine the efficiency defined in Section 4 and the quality. The
new reward function is a weighted summation of both. Formally,

suppose the generated rewritten query by the agent is ˆ𝑅𝑄 and

the actual running time of query ˆ𝑅𝑄 is 𝑇 . Then the new reward
function R(𝑠, 𝑎) is defined as follows:

R(𝑠, 𝑎) = 𝛽 (𝜏−𝑠.𝐸−𝑇)/𝜏 + (1 − 𝛽)𝐹
(

𝑟 (𝑄), 𝑟 (ˆ𝑅𝑄)
)

. (2)

The term (𝜏−𝑠.𝐸−𝑇)/𝜏 represents the efficiency of the rewritten
query in terms of running time compared to the time budget. The

function 𝐹 (𝑟 (𝑄), 𝑟 (ˆ𝑅𝑄)) represents the quality of the RQ’s result.
Note that computing 𝐹 could be expensive since the actual result
𝑟 (𝑄) of the original query is required. However, we only need
to pay the cost in the offline training phase once. In the online
phase, we don’t need to compute the 𝐹 value for a new query
when we use the MDP model to explore different RQs. Since the
MDP model learns from the final reward values only, we do not
require every query to use the same quality function. In particular,
different quality functions can be applied for different training
queries to evaluate their visualization qualities, e.g., some queries
are visualized as scatterplots and others as heat-maps. 𝛽 ∈ [0, 1]
is a parameter that indicates how important the running time is
compared to the result quality.

6.2 Quality-Aware Query Rewriter

Now we discuss how to apply the extended MDP model to imple-
ment a quality-aware query rewriter. We present the technical
details of two approaches and discuss their pros and cons. We
will show the evaluation results in Section 7.

Time (ms)

Agent (Quality-Aware MDP Model)

500
…

Original
Query

Hint
Set

…

Original
Query

Hint
Set

Approx.
Rule Set

…

Figure 9: One-stage MDP approach.

One-stage approach. A natural idea is to replace the MDP
model in Section 4 with the quality-aware MDP model. We let
the MDP agent simultaneously consider query hints and approx-
imation rules as rewriting options. By applying the new reward
function combining both the efficiency of the rewritten query
and the result’s quality, the MDP agent learns to maximize the
chance of generating viable rewritten queries and maximize the
quality.

Two-stage approach. A drawback of the previous approach
is that the agent might miss a non-approximate viable rewritten
query. To solve this problem, we consider a two-stage approach,
with a main idea to let the MDP agent exhaust all candidate query
hints first and then explore those approximation rules. In the
two-stage approach,Maliva first runs the original MDP model,
excluding the approximation rules. If the agent finds a viable
rewritten query, it outputs the 𝑅𝑄 as before. If the agent exhausts

Time (ms)

Agent (MDP Model)

…

500

Original
Query

Hint
Set

Approx.
Rule Set

…

Original
Query

Hint
Set

Agent (Quality-Aware MDP Model)

… …

Figure 10: Two-stage MDP approach. After running the original agent

that considers the 8 query-hint sets defined in Figure 4 without approxi-

mation rules, we cannot find a viable RQ. We then run the new agent with

the quality-aware MDP model that considers all 8 query-hint sets com-

bined with 3 approximation-rule sets (e.g., substituting the tweets table

with 20%, 40%, or 80% sample tables), resulting in 24 rewritten queries in

total. After spending extra time exploring a few RQs, the quality-aware

agent chooses 𝑅𝑄21 as the final decision.

all candidate 𝑅𝑄s without finding a viable one, and the elapsed
time has not exceeded the time budget 𝜏 , then we run the new
quality-awareMDPmodel that considers the approximation rules
to find a viable 𝑅𝑄 .

When the planning time for the original agent is longer than
the time budget, the two-stage approach reduces to the case
described in Section 4. In this case, the one-stage approach is
preferred since it can increase the chance of generating a viable
rewritten query considering approximation rules. When the plan-
ning time for the original agent is relatively small compared to
the time budget, the two-stage approach has the advantage of
not missing any non-approximate viable rewritten queries.

6.3 Differences betweenMaliva and Bao

The recent Bao technique [35] also uses hints to rewrite queries.
Maliva is closely related to Bao but different at multiple lev-
els. First, to select a potentially viable query plan from all the
candidate query-hint sets, Bao takes a brute-force approach by
enumerating all options (using QTE).Maliva, in contrast, trains
an MDP agent that explores the options by carefully balancing
the planning time and query execution time. This difference
makes Bao’s method inapplicable in many visualization prob-
lems in the main application domain of Maliva. Secondly, as we
will demonstrate in Section 7.6, when the number of candidate
rewriting options is large (e.g., > 16), the planning time of Bao
can exceed the time budget. Maliva, on the other hand, has a
significantly shorter planning time and thus is capable of gener-
ating much more viable rewritten queries. Lastly, Bao does not
consider approximate rewrites.Maliva, in contrast, offers flexi-
bility by allowing approximate rewriting queries with minimal
quality loss.

7 EXPERIMENTS

We conducted experiments to evaluateMaliva1. In particular, we
want to answer the following questions: (1) How well does it
rewrite queries to support visualization requests? (2) How well
does it generalize to different numbers of rewriting options?
(3) How well does it perform for different types of queries (e.g.
single-table selection queries and multiple-table joining queries)?
(4) How well does it generalize to different time budgets, unseen
queries and other databases? (5) How does it comparewith related
solutions? and (6) How much is its training overhead?

1Maliva is open-sourced on Github (https://github.com/baiqiushi/maliva)

164

7.1 Setup

Datasets.Weused two real datasets and a synthetic one as shown
in Table 1. The Twitter dataset included 100 million geo-located
tweets in the US from November 2015 to January 2017. We kept
the timestamp, geo-coordinate, text message, and several user
attributes for each tweet in a tweets table. For the experiment
on join queries, we used the tweets table and a users table. The
former had a foreign key of łuser_idž referencing the łidž in the
latter. We used the geo-coordinate attribute as the output for
visualization (e.g., choropleth map, heatmap, or scatterplot). The
NYC Taxi dataset [43] included taxi trip records within three
years from 2010 to 2012. The third dataset was generated from
the TPC-H benchmark [60]. We used the line-item table as the
fact table. The attributes we used for query selection conditions
are shown in Table 1.

Table 1: Datasets.

Dataset Record # Size Filtering Attributes

Twitter 100,000,000 57GB

text, created_at, coordinates,

users_statues_count, users_followers_count

NYC Taxi 500,412,914 146GB

pickup_datetime, trip_distance,

pickup_coordinates
TPC-H 300,005,811 65GB extended_price, ship_date, receipt_date

Query workloads. We generated random queries on each
dataset for training and evaluation. Take Twitter dataset as an
example. We first randomly sampled a set of tweets from the
base table. For each tweet, we generated a query as follows. We
chose the text, created_at, and coordinates attributes for
the selection conditions in the query. We generated three con-
ditions based on the values in the sampled tweet. For text, we
randomly selected a non-stop word in the original tweet’s text
message as the keyword condition. For created_at, we gener-
ated a temporal range condition with the value in the original
tweet as the left boundary.We divided the maximum range on the
created_at attribute in the base table into multiple zoom levels,
and randomly selected a level to generate the length of the range
condition. Suppose the maximum range on created_at had 𝐿

days. We computed the maximum zoom level on created_at as
𝑍 = ⌈𝑙𝑜𝑔2 (𝐿)⌉. If we randomly chose a zoom level from range
[0, 𝑍] as 𝑧, we computed the length of the query condition range
as 𝑙 =𝑚𝑎𝑥 (𝐿/2𝑧 , 1). Similarly, for the coordinates attribute, we
used the exact coordinates in the sampled tweet as the center. We
randomly chose a zoom level and generated a spatial bounding
box as the spatial range condition for the query.

In the experiments, we divided the queries into three disjoint
sets: a training set, a validation set and an evaluation set. We used
a hold-out validation strategy to choose the best agent. When
evaluating different approaches, the łdifficultyž of the queries in
the evaluation workload played an important role. That is, if none
of the physical plans of a query were viable, then no approach can
generate a viable plan without approximation. On the contrary, if
a high percentage (e.g., over 50%) of the physical plans are viable,
it would be easy for any method Ð even a trivial one that picks
plans at random Ð to find a viable plan. In this regard, we further
divided the evaluation workload into subsets of queries based on
their difficulty measured by the number of viable plans. In our
evaluation, we focus on łdifficultž queries where less than 50%
plans are viable since they can better distinguish the performance
of different methods. More evaluation data can be found in the
full version [3] of the paper.

QTE implementations. We implemented two QTEs to eval-
uate theMaliva’s performance. 1) Accurate-QTE. To isolate the

effect of estimation errors on the Maliva’ performance, we used
the actual execution time of the hinted queries as the estimation,
and set up a unit cost parameter to represent the time of collecting
the selectivity value of one filtering condition in a given rewritten
query. Unless otherwise stated, we used 40𝑚𝑠 as the unit cost
of collecting one selectivity value for the Accurate-QTE. 2) We
also implemented the ML-based approximate-QTE as presented
in Section 4.2. We used a random sample table [67] to estimate
the selectivity values of query conditions. The selectivity values
were used by the approximate-QTE’s ML model to estimate the
execution time of queries.

Performance metrics. We used two metrics to evaluate the
performance of different approaches. Recall that a generated
rewritten query is łviablež if its total response time (including
both the planning time and the querying time) is within a given
time budget. The łviable query percentagež (VQP) of a solution
was the ratio of viable queries over all the queries in the work-
load. The other metric was called łAverage Query Response Timež
(AQRT), which was the average total response time of all the
queries in the workload.

Query-rewriting Approaches.We compared the proposed
MDP-based approaches with three related methods, i.e., baseline,
naive, and Bao [34]. MDP-based approaches included an MDP
agent using an approximate-QTE, i.e., MDP (Approximate-QTE),
and an MDP agent using an accurate QTE, i.e., MDP (Accurate-
QTE). In the baseline approach, the middleware relies on the
database optimizer to generate a physical plan for the original
query. In the naive approach, we used the same approximate QTE
as the MDP-based approach, but enumerated all possible RQs in a
brute-force way, then chose the best RQ as the output. The third
approach was Bao [34]. We used its open-source release [4] as
the server, which provided interfaces for training the model and
using the model to choose the best plan for a given set of query
plans. Its original client, which was a PostgreSQL plug-in, did
not support query hints for using a specific index, which were
required by our visualization queries. To solve this problem, we
implemented a new client in Python to support such query hints
while keeping their server implementation.

In the experiments, we ran both the database and the middle-
ware on the same AWS t2.xlarge instance with four vCPUs, 16GB
RAM, and a 500GB SSD drive. We implemented the middleware
in Python 3.6 and the neural network using Pytorch 1.7. We eval-
uated Maliva on both PostgreSQL and a commercial database.
All figures were results on PostgreSQL if not stated otherwise.

7.2 Performance on Using Query Hints

We evaluated the performance of Maliva for only considering
query hints in rewriting options (i.e., no approximations). For
each dataset, we generated queries with three filtering conditions
and set up the rewrite-option set with 8 query-hint sets, i.e.,
using or not using the index on each attribute. Since one of the 8
hint sets was łno hint at allž, which was the original query, the
total number of candidate physical plans was 7, i.e., the original
query’s physical plan was one of the 7 hinted queries. We varied
the evaluation workloads with different numbers of viable plans
(i.e., 1 − 4 out of 7), and collected the VQP and AQRT metrics
for each approach. Table 2 shows the number of queries in the
evaluation workloads.

Figures 11(a), 12(a), and 12(a) show viable-query percentages
(VQP) on the three datasets. The MDP-based approaches and
Bao outperformed the baseline approach significantly, with MDP

165

Table 2: Number of queries in evaluation workloads.

of viable plans 0 1 2 3 4 ≥ 5

Twitter 518 97 234 118 153 69

NYC Taxi 408 91 146 13 181 3

TPC-H 381 107 310 66 47 0

 0

 20

 40

 60

 80

 100

1 2 3 4

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Bao
Baseline

(a) Viable query percentage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
)

Number of viable plans
 (out of 7 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 11: Performance on the Twitter dataset (𝜏 = 500𝑚𝑠).

(Accurate-QTE) as the best. For example, on the Twitter dataset,
for the queries with a single viable plan, both MDP-based ap-
proaches increased the VQP from the baseline’s 1% and Bao’s
20% to more than 70%. In most cases, MDP (Approximate-QTE)
performed better than or comparable to Bao. In one case of the
TPC-H dataset, Bao performed better than MDP (Approximate-
QTE) mainly because Bao’s QTE had a much higher accuracy
than the approximate QTE for TPC-H. When the number of viable
plans increased from 1 to 4, the VQP of all approaches increased
because the more viable plans existed for a query, the easier it
was for each approach to find a viable plan in a short amount of
time.

 0

 20

 40

 60

 80

 100

1 2 3 4

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Bao
Baseline

(a) Viable query percentage.

 0

 0.5

 1

 1.5

 2

 1 2 3 4

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
)

Number of viable plans
 (out of 7 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 12: Performance on the NYC Taxi dataset (𝜏 = 1𝑠).

 0

 20

 40

 60

 80

 100

1 2 3 4

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Bao
Baseline

(a) Viable query percentage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
)

Number of viable plans
 (out of 7 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 13: Performance on the TPC-H dataset (𝜏 = 500𝑚𝑠).

Figures 11(b), 12(b), and 12(b) show the results of the average
query-response time (AQRT) of different approaches. On the
Twitter dataset, Bao had a comparable AQRT to the baseline,
while MDP (Approximate-QTE) had much lower time than the
baseline and Bao for queries with one or two viable plans. For
example, MDP (Approximate-QTE) reduced the average response
time from the baseline’s 1.11 seconds and Bao’s 1.01 seconds
to 0.4 seconds. On the NYC Taxi dataset, Bao and MDP-based
approaches had comparable performance and were slightly better
than the baseline. On the TPC-H dataset, Bao was better than or
comparable to the baseline. In two cases, Bao performed better
than MDP (Approximate-QTE) because Bao’s QTE had a much
higher accuracy than the approximate QTE on TPC-H. However,

in all cases, MDP (Accurate-QTE) always had a lower query time
than Bao and the baseline, which means it generated a more
efficient plan. In cases where MDP (Accurate-QTE) had a longer
response time, the extra planning time was the main reason. At
the same time, the high VQP of MDP (Accurate-QTE) proved the
ability of the MDP model balancing the planning time and the
query-execution time to maximize the chance of generating a
viable rewritten query.

7.3 Effect of Rewrite-Option Number

We evaluated the effect of the number of rewriting options on
the Twitter dataset. We set up workloads of queries with differ-
ent numbers of filtering conditions, resulting in different num-
bers of rewriting options. To illustrate the planning efficiency
of MDP-based approaches, we also evaluated a naive approach,
i.e., Naive (Approximate-QTE), which enumerated all possible
RQs, estimated their time using the approximate QTE, and chose
the best RQ as output. Table 3 shows the number of queries for
the workloads. (Due to the space limit, we only show results
for 16 rewriting options. More results can be found in the full
version [3] of the paper.)

Table 3:Workloads with 16 rewriting options.

of viable plans 0 1-2 3-4 5-6 7-8 ≥ 9

of queries 485 150 241 90 132 93

 0

 20

 40

 60

 80

 100

1-2 3-4 5-6 7-8

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of viable plans
 (out of 15 candidates)

MDP (Accu.-QTE)
MDP (Appr.-QTE)

Naive (Appr.-QTE)
Bao

Baseline

(a) Viable query percentage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1-2 3-4 5-6 7-8

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
)

Number of viable plans
 (out of 15 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
Naive (Appr.-QTE) Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 14: Performance for 16 ROs on the Twitter dataset (𝜏 = 500𝑚𝑠).

As shown in Figure 14(a), the two MDP approaches performed
the best, generating up to 40× more viable queries than both
Bao and the baseline approach on queries with one or two viable
plans.

Figure 14(b) shows the AQRT results. Consistent with the VQP
results, MDP-based approaches outperformed both Bao and the
baseline approach. For example, MDP (Approximate-QTE) re-
duced the average response time from the baseline’s 1.13 seconds
and Bao’s 1.05 seconds to 0.66 seconds for queries with one or
two viable plans. Note that in both VQP and AQRT results, the
MDP-based approach performed significantly better than the
naive approach using the same approximate QTE. These results
show the benefit of MDP-based careful planning strategy over a
brute-force enumeration approach.

7.4 Effect of Time Budget

We evaluated the effect of time budget on the performance of
different approaches. We varied the time budget on the Twitter
dataset. We show results for 1-second time budget, and more
results can be found in the full version [3] of the paper.

As shown in Figure 15(a) and (b), the MDP-based approaches
outperformed both Bao and the baseline approach significantly.
MDP (Accurate-QTE) outperformed MDP (Approximate-QTE)
since the agent could afford the expensive estimation cost for
more accurate estimations to find better-rewritten queries. These

166

 0

 20

 40

 60

 80

 100

1 2 3 4

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of viable plans
 (out of 7 candidates)

MDP (Accu.-QTE)
MDP (Appr.-QTE)

Bao
Baseline

(a) Viable query percentage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
)

Number of viable plans
 (out of 7 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 15: Performance for 1-second time budget on the Twitter dataset.

results show that the MDP model is adaptive to QTEs with dif-
ferent costs and accuracies for different time budgets. Compared
with the results in Figure 11 where the time budget was 500𝑚𝑠 ,
MDP (Accurate-QTE) performed better when the budget was
higher, and MDP (Approximate-QTE) performed better when the
budget was lower.

7.5 Performance on Join Queries

To evaluate the performance of Maliva on queries with joins, we
set up a workload of queries joining the tweets and users tables
with filtering conditions on three attributes. For the MDP-based
approaches and Bao, we considered 7 different ways of using
or not using indexes on the three attributes and 3 different join
methods (i.e., nest-loop-join, hash-join, and merge-join) between
the two tables. Thus we had 21 query-hint sets in total as the
rewriting options. Figure 16(a) shows that for all workloads, the
MDP-based approaches outperformed Bao. For the queries with
only one or two viable plans, MDP (Approximate-QTE) generated
more than twice as many viable plans as Bao. Figure 16(b) shows
that MDP (Approximate-QTE) outperformed Bao in all cases. For
queries with one or two viable plans, the MDP-based approach
reduced the average query response time from Bao’s 0.87 second
to 0.34 second.

 0

 20

 40

 60

 80

 100

1-2 3-4 5-6 7-8 9-10

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of viable plans
 (out of 21 candidates)

MDP (Acc.-QTE)
MDP (Appr.-QTE)

Bao
Baseline

(a) Viable query percentage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1-2 3-4 5-6 7-8 9-10

A
v
g
.
q
u
e
ry

 t
im

e
 (

s
)

Number of viable plans
 (out of 21 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 16: Performance for join queries (Twitter dataset, 𝜏 = 500𝑚𝑠).

7.6 Additional Comparison with Bao

We further compared the performance of Maliva with Bao to
demonstrate the advantage of our approach (see Figure 17). Be-
sides the original Bao approach, we included two additional vari-
ants Ð Bao (Approximate-QTE) and Bao (Accurate-QTE) Ð that
integrated Bao’s enumeration strategy on top of our QTEs. We
focused on łdifficultž queries where less than 50% physical plans
were viable. We used the Twitter dataset and varied the number
of rewrite options from 8 to 32 (as described in Section 7.3).

Table 4: Workloads of queries where less than 50% plans were viable.

of rewrite options 8 16 32

of queries 449 481 497

As shown in Figure 17, our MDP-based approaches outper-
formed both the baseline approach and Bao-based approaches
significantly in all the cases. For the 8 rewrite-option workload,

 0

 20

 40

 60

 80

 100

 120

 140

8 16 32

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of rewrite options

Baseline
Bao

Bao (Approximate-QTE)
Bao (Accurate-QTE)

MDP (Approximate-QTE)
MDP (Accurate-QTE)

(a) Viable query percentage.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

8 16 32

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

s
)

Number of rewrite options

Baseline Query
MDP/Bao Plan

Bao Query
Bao (Appr.-QTE) Query
Bao (Accu.-QTE) Query

MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 17: Comparison with Bao on the Twitter dataset (𝜏 = 500𝑚𝑠).

both Bao-based approaches using the approximate-QTE and the
accurate-QTE outperformed the original Bao. The reason was
that Bao’s own QTE relied on the plan tree and operators’ cost
estimations from the physical plan generated by PostgreSQL. As
a result, it suffered from the significant estimation errors by Post-
greSQL for textual and spatial filtering conditions. With the help
of the approximate and accurate QTEs’ more accurate estima-
tions, the performance of Bao was improved. However, when the
number of rewrite options was 32, both Bao (Approximate-QTE)
and Bao (Accurate-QTE) performed even worse than the baseline
due to the high cost of estimating all the candidate plans in the
brute-force query-planning phase. The VQP of Bao (Accurate-
QTE) dropped to 0% because the planning time exceeded the
500𝑚𝑠 time budget. As shown in the 32 rewrite-option column
of Figure 17(b), by judiciously choosing which rewritten queries
to run the expensive accurate-QTE, the MDP (Accurate-QTE) re-
duced the average planning time from Bao (Accurate-QTE)’s 1.24
seconds to 0.37 seconds, with a reduction of more than 70%. This
result showed the superiority of using the MDP-based approach
for query planning over Bao’s brute-force approach.

7.7 Unseen Queries and Other Databases

To evaluate how well Maliva can be generalized to handle un-
seen queries, we did experiments on the Twitter dataset to train
and test the MDP model using two workloads with different
query shapes. The training queries were on a single tweets table
with three filtering conditions. In comparison, the testing queries
joined the tweets table and the users table on user_id with
three filtering conditions on the former table. As shown in Fig-
ure 18(a), the MDP-based approaches outperformed the baseline
significantly on the workload with unseen queries. For example,
for queries with a single viable plan, the MDP (Approximate-
QTE) approach increased the VQP from the baseline’s 2% to 55%,
and the MDP (Accurate-QTE) approach further increased it to
74%.

 0

 20

 40

 60

 80

 100

1 2 3 4

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Baseline

(a) Unseen queries (𝜏 = 500𝑚𝑠).

 0

 20

 40

 60

 80

 100

1-2 3-4 5-6 7

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Baseline

(b) Commercial DB (𝜏 = 250𝑚𝑠).

Figure 18: Generalization to (a) handle unseen queries and (b) use a

commercial database.

We also did experiments on the Twitter dataset using a com-
mercial database. We used a smaller table with 10 million records
and thus a smaller time budget (250𝑚𝑠). The result is shown in
Figure18(b). Due to the commercial database’s complex behaviors,
the approximate QTE had a much lower accuracy (two orders
of magnitude) than it had on PostgreSQL. The reason was the

167

approximate QTE only considered predicates’ selectivities for
estimation, but more factors in the commercial database affected
the query time, such as buffering and dynamic execution plan
change. However, MDP (Approximate QTE) still had compara-
ble performance (VQP) to the baseline. With a more accurate
yet more expensive QTE, MDP (Accurate-QTE) outperformed
the baseline for all the queries. For example, for queries with
one or two viable plans, the baseline had a VQP of 23%, MDP
(approximate-QTE) had a VQP of 36%, and MDP (Accurate-QTE)
increased the VQP to 50%.

7.8 Performance of Quality-Aware Rewriting

We evaluated the performance of the two quality-aware query
rewriting approaches (i.e., one-stage and two-stage) described
in Section 6. We used the same Twitter dataset and workload as
in Section 7.2. We compared them with the baseline approach
and the MDP approach without considering approximation rules.
For the quality-aware rewriting approaches, we considered five
approximation rules (i.e., adding a LIMIT clause with 0.032%,
0.16%, 0.8%, 4%, and 20% of the estimated cardinality of the query)
in addition to the eight query-hint sets considered in Section 7.2.
All MDP approaches used an accurate-QTE. Besides the AQP
and AQRT metrics, we collected a new metric called Jaccard-

based Quality, which computed the Jaccard similarity between the
visualization result of a rewritten query and that of the original
query.

 0

 20

 40

 60

 80

 100

0 1 2 3 4

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of viable plans
 (out of 7 candidates)

1-stage MDP (Accu.-QTE)
2-stage MDP (Accu.-QTE)

MDP (Accu.-QTE)
Baseline

(a) Viable query percentage.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4

A
v
g
.
J
a
c
c
a
rd

 q
u
a
lit

y

Number of viable plans
 (out of 7 candidates)

1-stage MDP (Accu.-QTE)
2-stage MDP (Accu.-QTE)

MDP (Accu.-QTE)
Baseline

(b) Avg. Jaccard-based quality.

Figure 19: Performance of quality-aware rewriting (Twitter, 𝜏 = 500𝑚𝑠).

Figure 19(a) shows the VQP of these approaches. For the group
of queries without any viable plan, the MDP approach without
considering approximation rules and the baseline approach had
a zero VQP. By generating approximate rewritten queries, the
two-stage MDP approach increased the VQP to 24%, and the one-
stage MDP approach further increased the VQP to 31%. There
were 518 queries in the 0-viable-plan workload (Table 2), and the
one-stage MDP approach generated more than 35 viable queries
than the two-stage approach. In terms of efficiency, the one-
stage MDP approach outperformed the two-stage approach in
all cases. Figure 19(b) shows the average Jaccard-based quality
of the rewritten queries generated by different approaches. Both
the baseline and the MDP approach without considering approx-
imation rules had no quality loss. The two-stage MDP approach
had a significant advantage over the one-stage approach in terms
of quality. For example, The former increased the quality of the
0-viable-plan queries from the one-stage approach’s 0.43 to 0.79.

7.9 Training Performance

We evaluated the training performance for workloads with differ-
ent numbers of rewriting options on the Twitter dataset. For each
workload, we divided a set of about 1, 400 queries into a training
set and a validation set. Then we varied the number of train-
ing queries and randomly sampled those from the training set
without replacement. We then used the sampled queries to train

an MDP agent and tested its performance on both the training
queries and the validation queries. We repeated the step ten times
for each number of training queries and collected the mean and
standard deviation of the VQPs. We conducted the experiments
on the MDP approach using the Accurate-QTE. We show results
for 8 rewriting options, and more results can be found in the full
version [3] of the paper.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

V
ia

b
le

 q
u
e
ry

 (
%

)

Number of training queries

Training VQP mean
Validation VQP mean

(a) Learning curve for 8 ROs.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 50 100 150 200 250 300

T
ra

in
in

g
 t
im

e
 (

s
)

Number of training queries

32 rewrite options
16 rewrite options
8 rewrite options

(b) Training time for different # of ROs.

Figure 20: Learning curve and training time on the Twitter dataset. The

shaded area is plotted with łmean + standard deviationž as the upper

bound and łmean − standard deviationž as the lower bound.

Figure 20(a) shows the trend when we varied the number of
training queries. The VQP on the validation set was close to the
VQP on the training set for about 50 training queries. Figure 20(b)
shows the training time of different numbers of rewrite options
on the training sizes. For the same number of training queries,
more rewrite options resulted in a larger q-network, which took
more time to update the weights. For the workload with thirty-
two rewrite options, it took about 150 seconds to train an MDP
agent on 150 training queries.

Remarks: The experiments show that Maliva outperformed
the baseline in terms of both the number of viable queries and
average query response time.Maliva generated up to 70× more
viable queries than the baseline. The advantages of Maliva were
shown in both the real and synthetic datasets, for different num-
bers of rewriting options, time budgets and query workloads. Its
offline training overhead was relatively small. By considering
approximation rules, Maliva generated even more viable queries.
The comparison with Bao shows the advantage of Maliva due
to the fact these two techniques were designed with different
settings and optimization goals.

Limitations: One limitation of Maliva is that when the num-
ber of rewriting options was significant (e.g., ≥ 32), both the
training and the online planning overhead of the MDP models
became expensive. Also, for different sets of rewriting options,
Maliva requires training different models.

8 CONCLUSIONS

In this paper we studied how to rewrite database queries to im-
prove execution performance in middleware-based visualization
systems. We explored two optimization options of adding hints
and doing approximation. We developed a novel solution called
Maliva, which adopts a Markov Decision Process (MDP) model
to rewrite a visualization request under a tight time constraint.
We gave a full specification of the solution, including how to
construct an MDP model, how to train an agent, and how to use
approximating rewriting options. Our experiments on both real
and synthetic datasets showed that Maliva performed signifi-
cantly better than the baseline without no-rewriting options in
terms of both the probability of serving a visualization request
within a time budget and query execution time.

ACKNOWLEDGMENTS

This work was supported by a UCI ICS research award and an
award from the Orange County Health Care Agency.

168

REFERENCES
[1] Sye-Min Chan ands Ling Xiao, John Gerth, and Pat Hanrahan. 2008. Maintain-

ing interactivity while exploring massive time series. In Proceedings of the IEEE
Symposium on Visual Analytics Science and Technology, IEEE VAST 2008, Colum-
bus, Ohio, USA, 19-24 October 2008. https://doi.org/10.1109/VAST.2008.4677357

[2] AsterixDB Query Hints. http://asterixdb.apache.org/docs/0.9.6/sqlpp/manual.
html#Query_hints.

[3] Maliva: Using Machine Learning to Rewrite Visualization Queries Under Time
Constraints. arXiv:cs.DB/2112.00182

[4] BaoForPostgreSQL. https://github.com/learnedsystems/baoforpostgresql.
[5] Leilani Battle, Remco Chang, and Michael Stonebraker. 2016. Dynamic

Prefetching of Data Tiles for Interactive Visualization. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, Fatma Özcan, Georgia
Koutrika, and Sam Madden (Eds.). https://doi.org/10.1145/2882903.2882919

[6] Leilani Battle, R. Jordan Crouser, Audace Nakeshimana, Ananda Montoly,
Remco Chang, and Michael Stonebraker. 2020. The Role of Latency and Task
Complexity in Predicting Visual Search Behavior. IEEE Trans. Vis. Comput.
Graph. 26, 1 (2020). https://doi.org/10.1109/TVCG.2019.2934556

[7] Mihai Budiu, Parikshit Gopalan, Lalith Suresh, Udi Wieder, Han Kruiger, and
Marcos K. Aguilera. 2019. Hillview: A trillion-cell spreadsheet for big data.
PVLDB 12, 11 (2019). http://www.vldb.org/pvldb/vol12/p1442-budiu.pdf

[8] Daniel Cheng, Peter Schretlen, Nathan Kronenfeld, Neil Bozowsky, and
William Wright. 2013. Tile based visual analytics for Twitter big data ex-
ploratory analysis. In Proceedings of the 2013 IEEE International Conference
on Big Data, 6-9 October 2013, Santa Clara, CA, USA. https://doi.org/10.1109/
BigData.2013.6691787

[9] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim
Kraska. 2015. Vizdom: Interactive Analytics through Pen and Touch. PVLDB
8, 12 (2015). https://doi.org/10.14778/2824032.2824127

[10] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and
Tim Kraska. 2016. The case for interactive data exploration accelerators
(IDEAs). In Proceedings of the Workshop on Human-In-the-Loop Data Analytics,
HILDA@SIGMOD 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Carsten
Binnig, Alan Fekete, and Arnab Nandi (Eds.). https://doi.org/10.1145/2939502.
2939513

[11] Cicero Augusto de Lara Pahins, Sean A. Stephens, Carlos Scheidegger, and
João Luiz Dihl Comba. 2017. Hashedcubes: Simple, Low Memory, Real-Time
Visual Exploration of Big Data. IEEE Trans. Vis. Comput. Graph. 23, 1 (2017).
https://doi.org/10.1109/TVCG.2016.2598624

[12] Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and Chi
Wang. 2016. Sample + Seek: Approximating Aggregates with Distribution
Precision Guarantee. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June
26 - July 01, 2016. https://doi.org/10.1145/2882903.2915249

[13] Ahmed Eldawy, Mohamed F. Mokbel, and Christopher Jonathan. 2016.
HadoopViz: AMapReduce framework for extensible visualization of big spatial
data. In 32nd IEEE International Conference on Data Engineering, ICDE 2016,
Helsinki, Finland, May 16-20, 2016. https://doi.org/10.1109/ICDE.2016.7498274

[14] Danyel Fisher, Igor O. Popov, Steven M. Drucker, and m. c. schraefel. 2012.
Trust me, i’m partially right: incremental visualization lets analysts explore
large datasets faster. InCHI Conference on Human Factors in Computing Systems,
CHI ’12, Austin, TX, USA - May 05 - 10, 2012. https://doi.org/10.1145/2207676.
2208294

[15] Parke Godfrey, Jarek Gryz, and Piotr Lasek. 2016. Interactive Visualization of
Large Data Sets. IEEE Trans. Knowl. Data Eng. 28, 8 (2016). https://doi.org/10.
1109/TKDE.2016.2557324

[16] Tao Guo, Kaiyu Feng, Gao Cong, and Zhifeng Bao. 2018. Efficient Se-
lection of Geospatial Data on Maps for Interactive and Visualized Explo-
ration. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018. https:
//doi.org/10.1145/3183713.3183738

[17] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). https://doi.org/10.
1145/3318464.3389741

[18] Hint(SQL. https://en.wikipedia.org/wiki/Hint_(SQL).
[19] Kevin Zeng Hu, Michiel A. Bakker, Stephen Li, Tim Kraska, and César A.

Hidalgo. 2019. VizML: A Machine Learning Approach to Visualization Recom-
mendation. In Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, CHI 2019, Glasgow, Scotland, UK, May 04-09, 2019, Stephen A.
Brewster, Geraldine Fitzpatrick, Anna L. Cox, and Vassilis Kostakos (Eds.).
https://doi.org/10.1145/3290605.3300358

[20] Jean-Francois Im, Felix Giguere Villegas, and Michael J. McGuffin. 2013. VisRe-
duce: Fast and responsive incremental information visualization of large
datasets. In Proceedings of the 2013 IEEE International Conference on Big Data,
6-9 October 2013, Santa Clara, CA, USA, Xiaohua Hu, Tsau Young Lin, Vijay V.
Raghavan, Benjamin W. Wah, Ricardo A. Baeza-Yates, Geoffrey C. Fox, Cyrus
Shahabi, Matthew Smith, Qiang Yang, Rayid Ghani, Wei Fan, Ronny Lempel,
and Raghunath Nambiar (Eds.). https://doi.org/10.1109/BigData.2013.6691710

[21] Jia Yu and Mohamed Sarwat. 2020. Accelerating Spatial Data Visualization
Dashboards via a Materialized Sampling Approach. In Proceedings of the Inter-
national Conference on Data Engineering, ICDE.

[22] Lilong Jiang, Protiva Rahman, and Arnab Nandi. 2018. Evaluating Interactive
Data Systems: Workloads, Metrics, and Guidelines. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018. https://doi.org/10.1145/3183713.3197386

[23] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi.
2014. Distributed and interactive cube exploration. In IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4,
2014, Isabel F. Cruz, Elena Ferrari, Yufei Tao, Elisa Bertino, and Goce Trajcevski
(Eds.). https://doi.org/10.1109/ICDE.2014.6816674

[24] Tim Kraska. 2018. Northstar: An Interactive Data Science System. PVLDB 11,
12 (2018). http://www.vldb.org/pvldb/vol11/p2150-kraska.pdf

[25] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and
Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement
Learning. CoRR abs/1808.03196 (2018). arXiv:1808.03196 http://arxiv.org/abs/
1808.03196

[26] Doris Jung Lin Lee and Aditya G. Parameswaran. 2018. The Case for a Visual
Discovery Assistant: A Holistic Solution for Accelerating Visual Data Explo-
ration. IEEE Data Eng. Bull. 41, 3 (2018). http://sites.computer.org/debull/
A18sept/p3.pdf

[27] Kaiyu Li and Guoliang Li. 2018. Approximate Query Processing: What is New
andWhere to Go? - A Survey on Approximate Query Processing. Data Science
and Engineering 3, 4 (2018). https://doi.org/10.1007/s41019-018-0074-4

[28] Lauro Didier Lins, James T. Klosowski, and Carlos Eduardo Scheidegger. 2013.
Nanocubes for Real-Time Exploration of Spatiotemporal Datasets. IEEE Trans.
Vis. Comput. Graph. 19, 12 (2013). https://doi.org/10.1109/TVCG.2013.179

[29] Zhicheng Liu and Jeffrey Heer. 2014. The Effects of Interactive Latency on
Exploratory Visual Analysis. IEEE Trans. Vis. Comput. Graph. 20, 12 (2014).
https://doi.org/10.1109/TVCG.2014.2346452

[30] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. 2013. imMens: Real-time Visual
Querying of Big Data. Comput. Graph. Forum 32, 3 (2013). https://doi.org/10.
1111/cgf.12129

[31] G. Lohman. 2014. Is Query Optimization a łSolvedž Problem? ACM SIGMOD
Blog. ACM Blog, 14’ (2014).

[32] Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and Guoliang Li. 2020. In-
teractive Cleaning for Progressive Visualization through Composite Questions.
In 36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas,
TX, USA, April 20-24, 2020. https://doi.org/10.1109/ICDE48307.2020.00069

[33] Yuyu Luo, Xuedi Qin, Nan Tang, Guoliang Li, and XinranWang. 2018. DeepEye:
Creating Good Data Visualizations by Keyword Search. In Proceedings of the
2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, GautamDas, ChristopherM. Jermaine,
and Philip A. Bernstein (Eds.). https://doi.org/10.1145/3183713.3193545

[34] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad
Alizadeh, and Tim Kraska. 2020. Bao: Learning to Steer Query Optimizers.
CoRR abs/2004.03814 (2020). arXiv:2004.03814 https://arxiv.org/abs/2004.
03814

[35] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad
Alizadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization
Practical. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos,
and Divesh Srivastava (Eds.). https://doi.org/10.1145/3448016.3452838

[36] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning
for Join Order Enumeration. In Proceedings of the First International Work-
shop on Exploiting Artificial Intelligence Techniques for Data Management,
aiDM@SIGMOD 2018, Houston, TX, USA, June 10, 2018, Rajesh Bordawekar
and Oded Shmueli (Eds.). https://doi.org/10.1145/3211954.3211957

[37] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Al-
izadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo:
A Learned Query Optimizer. Proc. VLDB Endow. 12, 11 (2019). https:
//doi.org/10.14778/3342263.3342644

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, DaanWierstra, andMartin A. Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[39] Dominik Moritz, Danyel Fisher, Bolin Ding, and Chi Wang. 2017. Trust, but
Verify: Optimistic Visualizations of Approximate Queries for Exploring Big
Data. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, Denver, CO, USA, May 06-11, 2017. https://doi.org/10.1145/3025453.
3025456

[40] Dominik Moritz, Bill Howe, and Jeffrey Heer. 2019. Falcon: Balancing In-
teractive Latency and Resolution Sensitivity for Scalable Linked Visualiza-
tions. In Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, CHI 2019, Glasgow, Scotland, UK, May 04-09, 2019. https:
//doi.org/10.1145/3290605.3300924

[41] Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik
Chakraborty, Hemant Bhanawat, and Kishor Bachhav. 2017. SnappyData: A
Unified Cluster for Streaming, Transactions and Interactice Analytics. In CIDR
2017, 8th Biennial Conference on Innovative Data Systems Research, Chaminade,
CA, USA, January 8-11, 2017, Online Proceedings. http://cidrdb.org/cidr2017/
papers/p28-mozafari-cidr17.pdf

169

[42] MySQL Optimizer Hints. https://dev.mysql.com/doc/refman/8.0/en/
optimizer-hints.html.

[43] NYC Taxi Data. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.
page.

[44] Oracle Using Optimizer Hints. https://docs.oracle.com/cd/B19306_01/server.
102/b14211/hintsref.htm#i8327.

[45] Yongjoo Park, Michael J. Cafarella, and Barzan Mozafari. 2016. Visualization-
aware sampling for very large databases. In 32nd IEEE International Conference
on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016. https:
//doi.org/10.1109/ICDE.2016.7498287

[46] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018.
VerdictDB: Universalizing Approximate Query Processing. In Proceedings of
the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018. https://doi.org/10.1145/3183713.
3196905

[47] Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. 2020. QuickSel: Quick
Selectivity Learning with Mixture Models. In Proceedings of the 2020 Interna-
tional Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger,
AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.).
https://doi.org/10.1145/3318464.3389727

[48] Jinglin Peng, Dongxiang Zhang, Jiannan Wang, and Jian Pei. 2018. AQP++:
Connecting Approximate Query Processing With Aggregate Precomputation
for Interactive Analytics. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018. https://doi.org/10.1145/3183713.3183747

[49] PostgreSQL Query Hints. https://pghintplan.osdn.jp/pg_hint_plan.html.
[50] Fotis Psallidas and Eugene Wu. 2018. Provenance for Interactive Visual-

izations. In Proceedings of the Workshop on Human-In-the-Loop Data An-
alytics, HILDA@SIGMOD 2018, Houston, TX, USA, June 10, 2018. https:
//doi.org/10.1145/3209900.3209904

[51] Xin Qian, Ryan A. Rossi, Fan Du, Sungchul Kim, Eunyee Koh, Sana Malik,
Tak Yeon Lee, and Joel Chan. 2020. ML-based Visualization Recommendation:
Learning to Recommend Visualizations from Data. CoRR abs/2009.12316
(2020). arXiv:2009.12316 https://arxiv.org/abs/2009.12316

[52] Sajjadur Rahman, Maryam Aliakbarpour, Hidy Kong, Eric Blais, Karrie Kara-
halios, Aditya G. Parameswaran, and Ronitt Rubinfeld. 2017. I’ve Seen
"Enough": Incrementally Improving Visualizations to Support Rapid Deci-
sion Making. PVLDB 10, 11 (2017). https://doi.org/10.14778/3137628.3137637

[53] Elke A. Rundensteiner, Matthew O. Ward, Zaixian Xie, Qingguang Cui, Charu-

datta V. Wad, Di Yang, and Shiping Huang. 2007. XmdvtoolQ : : quality-aware
interactive data exploration. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Beijing, China, June 12-14, 2007.
https://doi.org/10.1145/1247480.1247623

[54] Sourav Sikdar and Chris Jermaine. 2020. MONSOON: Multi-Step Optimization
and Execution of Queries with Partially Obscured Predicates. In Proceedings of
the 2020 International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier,
Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and
Hung Q. Ngo (Eds.). https://doi.org/10.1145/3318464.3389728

[55] SQL Server Query Hints. https://docs.microsoft.com/en-us/sql/t-sql/queries/
hints-transact-sql-query?view=sql-server-ver15.

[56] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
Proc. VLDB Endow. 13, 3 (2019). https://doi.org/10.14778/3368289.3368296

[57] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning - an
introduction. MIT Press. https://www.worldcat.org/oclc/37293240

[58] Wenbo Tao, Xiaoyu Liu, Yedi Wang, Leilani Battle, Çagatay Demiralp, Remco
Chang, and Michael Stonebraker. 2019. Kyrix: Interactive Pan/Zoom Visual-
izations at Scale. Comput. Graph. Forum 38, 3 (2019). https://doi.org/10.1111/
cgf.13708

[59] Michel Tokic. 2010. Adaptive epsilon-Greedy Exploration in Reinforcement
Learning Based on Value Difference. In KI 2010: Advances in Artificial Intelli-
gence, 33rd Annual German Conference on AI, Karlsruhe, Germany, September
21-24, 2010. Proceedings (Lecture Notes in Computer Science), Rüdiger Dill-
mann, Jürgen Beyerer, Uwe D. Hanebeck, and Tanja Schultz (Eds.), Vol. 6359.
https://doi.org/10.1007/978-3-642-16111-7_23

[60] tpch. TPC-H Website, http://www.tpc.org/tpch/.
[61] Immanuel Trummer, Junxiong Wang, Deepak Maram, Samuel Moseley, Sae-

han Jo, and Joseph Antonakakis. 2019. SkinnerDB: Regret-Bounded Query
Evaluation via Reinforcement Learning. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD Conference 2019, Am-
sterdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan
Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.).
https://doi.org/10.1145/3299869.3300088

[62] Lu Wang, Robert Christensen, Feifei Li, and Ke Yi. 2015. Spatial Online
Sampling and Aggregation. PVLDB 9, 3 (2015). https://doi.org/10.14778/
2850583.2850584

[63] Qianwen Wang, Zhutian Chen, Yong Wang, and Huamin Qu. 2020. Applying
Machine Learning Advances to Data Visualization: A Survey onML4VIS. CoRR
abs/2012.00467 (2020). arXiv:2012.00467 https://arxiv.org/abs/2012.00467

[64] Yunhai Wang, Kang Feng, Xiaowei Chu, Jian Zhang, Chi-Wing Fu, Michael
Sedlmair, Xiaohui Yu, and Baoquan Chen. 2018. A Perception-Driven Ap-
proach to Supervised Dimensionality Reduction for Visualization. IEEE Trans.
Vis. Comput. Graph. 24, 5 (2018). https://doi.org/10.1109/TVCG.2017.2701829

[65] Zhe Wang, Nivan Ferreira, Youhao Wei, Aarthy Sankari Bhaskar, and Carlos
Scheidegger. 2017. Gaussian Cubes: Real-TimeModeling for Visual Exploration
of Large Multidimensional Datasets. IEEE Trans. Vis. Comput. Graph. 23, 1
(2017). https://doi.org/10.1109/TVCG.2016.2598694

[66] Christopher J. C. H. Watkins and Peter Dayan. 1992. Technical Note Q-
Learning. Mach. Learn. 8 (1992). https://doi.org/10.1007/BF00992698

[67] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs,
and Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer
cost models really unusable?. In 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, Christian S. Jensen,
Christopher M. Jermaine, and Xiaofang Zhou (Eds.). https://doi.org/10.1109/
ICDE.2013.6544899

[68] Wentao Wu, Xi Wu, Hakan Hacigümüs, and Jeffrey F. Naughton. 2014. Uncer-
tainty Aware Query Execution Time Prediction. PVLDB 7, 14 (2014).

[69] Jia Yu, Raha Moraffah, and Mohamed Sarwat. 2017. Hippo in Action: Scalable
Indexing of a Billion New York City Taxi Trips and Beyond. In 33rd IEEE
International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA,
April 19-22, 2017. https://doi.org/10.1109/ICDE.2017.201

[70] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. 2018. GeoSparkViz: a scalable
geospatial data visualization framework in the apache spark ecosystem. In
Proceedings of the 30th International Conference on Scientific and Statistical
Database Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11, 2018.
https://doi.org/10.1145/3221269.3223040

[71] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
Learning with Tree-LSTM for Join Order Selection. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
https://doi.org/10.1109/ICDE48307.2020.00116

[72] Kai Zeng, Sameer Agarwal, Ankur Dave, Michael Armbrust, and Ion Stoica.
2015. G-OLA: Generalized On-Line Aggregation for Interactive Analysis on
Big Data. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015.
https://doi.org/10.1145/2723372.2735381

[73] Xuhong Zhang, Jun Wang, Jiangling Yin, and Shouling Ji. 2016. Sap-
prox: Enabling Efficient and Accurate Approximations on Sub-datasets with
Distribution-aware Online Sampling. PVLDB 10, 3 (2016). https://doi.org/10.
14778/3021924.3021928

170

