
Eurographics Symposium on Rendering 2017
P. Sander and M. Zwicker
(Guest Editors)

Volume 36 (2017), Number 4

Real-Time Linear BRDF MIP-Mapping

Chao Xu1, Rui Wang1, Shuang Zhao2, and Hujun Bao1

1Zhejiang University
2University of California, Irvine

(a) Reference (b) Direct sampling (c) The LEAN mapping (d) Our method

Figure 1: Images rendered with different BRDF MIP-mapping methods: (a) the reference generated with 64× supersampling; (b) direct
sampling with no MIP-mapping results in severe aliasing; (c) The LEAN mapping [OB10] has difficulty in handling spatially-varying BRDFs;
(d) our method well preserves the high-quality reflectance details by MIP-mapping BRDFs and normals jointly.

Abstract
We present a new technique to jointly MIP-map BRDF and normal maps. Starting with generating an instant BRDF map, our
technique builds its MIP-mapped versions based on a highly efficient algorithm that interpolates von Mises-Fisher (vMF) distri-
butions. In our BRDF MIP-maps, each pixel stores a vMF mixture approximating the average of all BRDF lobes from the finest
level. Our method is capable of jointly MIP-mapping BRDF and normal maps, even with high-frequency variations, at real-time
while preserving high-quality reflectance details. Further, it is very fast, easy to implement, and requires no precomputation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Richly detailed surfaces resulting from high-resolution BRDF and
normal maps have led to computer generated images with remar-
kable realism. However, if the resolutions of these maps are sig-
nificantly higher than those of the final image, the result can be
prone to severe aliasing. This is commonly the case when an de-

tailed object is rendered from a distance. The problem can become
even worse for shiny BRDFs.

To address this problem, offline rendering techniques usually
apply heavy super-sampling which introduces high computational
overhead. To reduce aliasing while maintaining real-time perfor-
mance, texture MIP-mapping [Wil83] has been introduced. This
technique builds pre-filtered versions of a texture which then can

submitted to Eurographics Symposium on Rendering (2017)

2 Xu et al. / Real-Time Linear BRDF MIP-Mapping

be used at render time to reduce aliasing. Unfortunately, unlike
color textures which can be easily filtered via linear interpolation,
BRDF and normal maps generally cannot be naïvely filtered due to
their nonlinear relationship to an object’s final appearance.

Due to the significance of this problem, a large body of prior
research has been conducted (e.g., [TLQ∗05, Tok05, HSRG07,
TLQ∗08,OB10,DHI∗13]). However, some of these methods are li-
mited to normal maps and/or require precomputation, while others
offer limited accuracy (see §2).

We introduce a new approach to enable linear MIP-mapping of
BRDF and normal maps in a joint manner, offering real-time per-
formance with no precomputation required. In particular, our ap-
proach computes at run-time per-pixel effective BRDFs determined
by the BRDF and normal maps. Our contributions include:

• A new framework enabling joint MIP-mapping of BRDF and
normal maps (§3.1);
• A new scheme to allow multi-lobe BRDF representations (§3.2);
• An efficient GPU implementation of our approach (§4).

2. Related Work

BRDF/normal map filtering. BRDF/normal map filtering has
long been an active topic in computer graphics. Please refer to
this survey [BN12] for a comprehensive review. From a high le-
vel, many previous methods filter BRDF/normal maps based on
one [Tok05] or multiple [TLQ∗05, HSRG07, TLQ∗08] Gaussian-
like functions. These methods, however, normally focus on either
BRDF or normal map filtering (while assuming the other to be spa-
tially invariant or smooth across the surface). Further, many of them
involve precomputations, which can be problematic for highly dy-
namic scenes.

LEAN mapping [OB10] has previously been introduced to ena-
ble real-time linear MIP-mapping of bump-mapped surfaces. The
simplicity and effectiveness offered by this method has made it
popular in many practical applications. Later, LEADR [DHI∗13]
mapping generalizes the LEAN framework to support physically-
based BRDFs as well as shadowing and masking effects. However,
as discussed above, these methods focus on normal maps while le-
aving high-frequency BRDF variations unhandled. Another major
limitation shared by both methods in the context of our work co-
mes from the use of single Beckmann function, which can lead to
unsatisfactory results when handling materials with multiple con-
centrated highlights (e.g., fabrics).

Rendering high-resolution normal maps. Recently, a few
techniques have been introduced for physically-based rendering of
glossy surface with highly detailed normal distributions [YHJ∗14,
YHMR16]. Although the resulting renderings have remarkable
qualities, these methods are generally too expensive for interactive
applications.

Downsampling of volumetric parameters. Pre-filtering has also
been studied for downsampling volumetric data in the context
of 3D visualization [KB08, SKMH14] and rendering anisotropic
participating media [ZWDR16]. These methods, however, are not
applicable to our problem of real-time rendering high-resolution
BRDF/normal maps.

3. Algorithm

We introduce a new approach to enable linear MIP-mapping of spa-
tially varying BRDFs and normals with no precomputation nee-
ded. First, we present a new interpolation method based on the von
Mises-Fisher (vMF) distribution to MIP-map BRDF maps (§3.1).
Then, we further improve the accuracy of our method by enabling
multi-lobe representations via lobe clustering (§3.2).

3.1. BRDF MIP-Mapping

Given a surface point xxx and direction ωωωo, the corresponding exitant
radiance Lo is given by the rendering equation [Kaj86] as

Lo(xxx,ωωωo) =
∫
S2

Li(xxx,ωωωi)ρ(xxx,ωωωi→ ωωωo)dωωωi, (1)

where Li indicates the incident radiance, and ρ is the BRDF.†

Provided a pixel footprint Ω (around some surface point xxx) and
direction ωωωo, this paper focuses on computing the average exitant
radiance Lo given by

Lo(Ω,ωωωo) =
1
|Ω|

∫
Ω

∫
S2

Li(yyy,ωωωi)ρ(yyy,ωωωi→ ωωωo)dωωωi dyyy, (2)

where |Ω| denote the surface area of Ω. When Ω is a small neig-
hborhood around xxx, we have Li(yyy,ωωω) ≈ Li(xxx,ωωω) for all yyy ∈ Ω and
ωωω ∈ S2. Thus, Eq. (2) becomes

Lo(Ω,ωωωo) =
∫
S2

Li(xxx,ωωωi)ρeff(Ω,ωωωi→ ωωωo)dωωωi, (3)

where ρeff is the patch-wise effective BRDF given by

ρeff(Ω,ωωωi→ ωωωo) :=
1
|Ω|

∫
Ω

ρ(yyy,ωωωi→ ωωωo)dyyy. (4)

Notice that ρeff depends on point-wise BRDFs everywhere in Ω.
When we assume the pixel footprint Ω to contain N discrete texels
with BRDFs ρ

(1)
tex ,ρ

(2)
tex , . . . ,ρ

(N)
tex , Eq. (4) then becomes

ρeff(Ω,ωωωi→ ωωωo) =
1
N

N

∑
i=1

ρ
(i)
tex(ωωωi→ ωωωo). (5)

In this paper, we assume ρtex to be parameterized with the half-way
vector ωωωh := (ωωωi+ωωωo)/‖ωωωi+ωωωo‖ and represent ρtex using the von
Mises-Fisher (vMF) distribution:

ρtex(ωωωi→ ωωωo) = ρtex(ωωωh; µµµ,κ) =
κ

4πsinhκ
eκ〈µµµ,ωωωh〉, (6)

with µµµ∈ S2 and κ∈R+. When κ� 1, Eq. (6) can be approximated
with

ρtex(ωωωh; µµµ,κ)≈ κ

2π
eκ(〈µµµ,ωωωh〉−1). (7)

Given a pixel footprint Ω containing N texels, obtaining its effective
BRDF (5) requires averaging multiple vMF functions (7). Previous
work [XWB15] has shown that a vMF distribution with parameters
µµµ and κ can be characterized using a (unnormalized) vector rrr ∈ R3

satisfying

rrr
‖rrr‖ = µµµ,

3‖rrr‖−‖rrr‖3

1−‖rrr‖2 = κ. (8)

† We assume the cosine of the incident angle to be included in ρ.

submitted to Eurographics Symposium on Rendering (2017)

Xu et al. / Real-Time Linear BRDF MIP-Mapping 3

To find rrr, one can first compute its magnitude ‖rrr‖ by solving the
cubic equation

‖rrr‖3−κ‖rrr‖2−3‖rrr‖+κ = 0, (9)

and then letting rrr = ‖rrr‖µµµ. Notice that although Eq. (9) has three
real roots, only one of them will be valid in general (see Xu et al.’s
work [XWB15] for more details).

When every vMF distribution i characterized by an vector rrr(i),
we can then approximate their average with one vMF distribution
characterized by

rrrM =
1
N

N

∑
i=1

rrr(i). (10)

Lastly, the original parameters (i.e., µµµ and κ) can be obtained by
applying Eq. (8) to rrrM .

Handling normal maps. Our BRDF MIP-mapping method can
also be integrated to render objects with normal maps. At the finest
level of a BRDF map, we assume each texel to be associated with
a normal distribution function (NDF) γ and a base BRDF ρ para-
meterized with 〈ωωωh,nnn〉. Then, the effective BRDF at each texel is
known to be a convolution between γ and ρ [HSRG07]:

ρtex(ωωωh) =
∫
S2

ρ(〈ωωωh,nnn〉)γ(nnn)dnnn. (11)

We also represent the NDF γ with the von Mises-Fisher (vMF) dis-
tribution with mean µµµN and concentration factor κN as:

γ(nnn; µµµN ,κN) =
κN

2π
eκN(〈µµµN ,nnn〉−1), (12)

As stated in prior work [HSRG07], the per-texel effective
BRDF (11) simplifies for certain base BRDFs ρ such as Blinn-
Phong [Bli77] and Torrance-Sparrow [TS67]. In the former case,
for instance, ρ(〈ωωωh, nnn〉) = s+1

2π
〈ωωωh, nnn〉s for some fixed s ∈ R+. Gi-

ven an NDF determined by µµµN and κN (12), let s′ := κN ·s/(κN +s).
Then, it holds that

ρtex(ωωωh) =
s′+1

2π
〈ωωωh, µµµN〉

s′ . (13)

This Blinn-Phong BRDF can be further approximated using an
vMF function with parameters µµµN and κ [WRG∗09] as:

ρtex(ωωωh; µµµN ,κ) =
κ

2π
eκ(〈µµµN ,ωωωh〉−1). (14)

where κ = s′+1.

3.2. Enabling vMF Mixtures

Eq. (10) approximates the average of multiple vMF distributions
using one vMF function. This, unfortunately, can be quite inaccu-
rate for input with complex distributions (Figure 2-ac). To address
this problem, previous methods [HSRG07] have proposed to fit
vMF mixtures (i.e., linear combinations of vMF lobes). Unfortu-
nately, the previously developed fitting methods are too expensive
for real-time applications.

We introduce a new method to fit vMF mixtures (Figure 2-d), of-
fering a good balance between resulting accuracy and performance.
We start with partitioning the angular domain S2 into J components

ρtex(ωh)
(1) ρtex(ωh)

(2) ρtex(ωh)
(3) ρtex(ωh)

(4)

(a) Reference (b) MIP-mapping (c) Ours (1-lobe) (d) Ours (2-lobe)

Low

High

Figure 2: Necessity of using multiple lobes. For input with com-
plex BRDF/normal variations (a), linear MIP-mapping of BRDF
parameters (b) is largely invalid. Using only one vMF lobe per pixel
footprint can lead to unsatisfactory results (c). Our method offers
much better accuracy by using vMF mixtures (d). For example, to
accurately resemble the average of the four input BRDFs shown on
the top, at least two vMF lobes are needed.

S(1),S(2), . . . ,S(J) (for some fixed J). Then, we use this partitio-
ning to cluster the input vMF lobes as follows. Given a set of vMF
distributions characterized by rrr(1),rrr(2), . . ., we compute for each
j ∈ {1,2, . . . ,J} a vector rrr(j)

M by applying Eq. (10) to all rrr(i) sa-
tisfying rrr(i)/‖rrr(i)‖ ∈ S(j). The outcome of this process is then a
vMF mixture with J lobes:

ρeff(Ω,ωωωi→ ωωωo) =
J

∑
j=1

w(j)
ρtex

(
ωωωh; rrr(j)

M

)
, (15)

where w(j) denotes the fraction of characteristic vectors rrr(i) contai-
ned in S(j).

To implement this idea, we scale-up the BRDF textures and use
the added resolution to store multiple vMF lobes. Precisely, we
pack multiple textures each of which stores one vMF lobe at every
MIP-mapping level. The second column of Figure 3 illustrates an
example where the angular domain S2 is subdivided into 4 compo-
nents (i.e., J = 4), resulting in four vMF lobes per pixel.

When J is large, evaluating Eq. (15) can be time consuming.
We tackle this problem by generating multiple versions of MIP-
mapped BRDF textures with varying levels of subdivision. At run-
time, we then adaptively select the level of subdivision to achieve
a good balance between performance and quality. Please see §4 for
more details.

4. Implementation

We now describe our implementation of the technique described in
§3. With no precomputation, our method renders the input scene
from scratch for each frame. Our run-time rendering pipeline con-
sists of three main steps outlined as follows.

submitted to Eurographics Symposium on Rendering (2017)

4 Xu et al. / Real-Time Linear BRDF MIP-Mapping

1. We start with creating an instant BRDF map for each object
based on its geometry as well as, base BRDF and normal maps.

2. Then, we create a hierarchy of MIP-mapped versions of the in-
stant BRDF map using our vMF filtering technique (§3).

3. Lastly, these BRDF MIP-maps are used to reconstruct the ef-
fective BRDF at each pixel, which is in turn integrated with the
lighting to compute the final shading.

We now provide more details for each of these steps.

Generation of instant BRDF map. Our method first creates an
instant BRDF map that encodes local BRDF and normal informa-
tion. This map changes per frame for dynamic scenes.

We first create a frame buffer with the same resolution as the
base BRDF map. Then, triangles of the object are rasterized into
this buffer using their texture coordinates. For each triangle, the
vertex normals are interpolated to obtain the shading normal at each
texel. During this process, all shading normals are transformed into
the camera space with the back-facing ones culled. Then, at each
texel of this instant BRDF map, we compute an effective BRDF in
the form of Eq. (7). Given per-texel effective BRDFs (represented
as vMF distributions), we solve the cubic equation (9) to compute
the length ‖rrr‖ of the corresponding characteristic vector rrr (which
only depends on κ). To accelerate this process, we discretize κ and
store the solution ‖rrr‖ for each κ in a lookup table (represented as a
1× 1024 texture in our implementation) during preprocessing. At
render time, we then fetch this texture to quickly determine rrr for
each texel.

BRDF MIP-mapping. Given the instant BRDF map, we perform
an extra rendering pass to build its MIP-mapped versions. First, a
set of textures are created to store different levels of MIP-maps. As
described in §3.2, we partition the angular domain (which is now
a hemisphere toward the viewport since all shading normals have
been transformed into the camera space) into a few components.
Our implementation uses three levels of subdivision: 1× 1, 1× 4,
and 2× 4 where x× y denotes the partitioning of longitude and
latitude into x and y components, respectively. For a subdivision

Level 0

Level 1

Level 2

Subdivision
1×1

Subdivision
1×4

…

…

…

…

… … …

Lobe #1 Lobe #2

Lobe #3 Lobe #4

Figure 3: Storing effective BRDFs ρeff as vMF mixtures (Eq. (15))
at varying subdivision levels.

Algorithm 1 Pseudocode of the pixel shader in final shading

1: procedure PIXELSHADER(uv)
2: {Setup: calculate half angle ωωωh, spatial MIP-map level l}
3: ρ = 0 . get effective vMF BRDF from the level-0 map
4: rrr(0) = FetchLevel0Texture(l,uv)
5: if ‖rrr(0)‖< ε0 then . check if lobes are not concentrated
6: for i = 0 to 3 do
7: rrr(1i) = FetchLevel1Texture(l, i,uv)
8: if ‖rrr(1i)‖< ε1 then . compute using the next level
9: for i = 0 to 3 do

10: rrr(2i) = FetchLevel2Texture(l, i,uv)
11: ρ += COMPUTESHADING(rrr(2i),ωωωh)
12: end for
13: else
14: ρ += COMPUTESHADING(rrr(1i),ωωωh)
15: end if
16: end for
17: else
18: ρ += COMPUTESHADING(rrr(0),ωωωh)
19: end if
20: return ρ ·L . L denotes the light intensity
21: end procedure
22:
23: procedure COMPUTESHADING(rrr,ωωωh)

24: µµµ = rrr
‖rrr‖ ,κ =

3‖rrr‖−‖rrr‖3

1−‖rrr‖2

25: ρ = κ

2π
eκ(〈µµµ,ωωωh〉−1)

26: return ρ

27: end procedure

level x× y, each texel contains (x · y) vMF lobes each of which
represented using an unnormalized vector. To reduce the number
of textures, we pack all these vectors for all texels into a single
MIP-mapped texture.

Figure 3 illustrates BRDF MIP-maps with angular subdivisions
of 1×1 (i.e., no subdivision) and 1×4. For the latter, each BRDF
map contains four sub-textures each of which stores one of the four
vMF lobes for all texels. For each level of subdivision, we build
a full spatial MIP-map using Eq. (10) to merge lower-level texels
when building higher-level maps. All these computations are per-
formed in the pixel shader with results outputted to two rendering
targets (which corresponds to 1×4 and 2×4 subdivisions respecti-
vely). After obtaining the vMF lobe information (i.e., characteristic
vectors) for all three subdivision levels, we use hardware API to
build MIP-maps upon them.

Final shading. The pseudocode of our pixel shader implementing
the final shading step is shown in Algorithm 1. To shade one pixel,
we first calculate the size of its footprint (on the object surface) to
determine the spatial MIP-map level. Then, we fetch the parameters
of effective BRDF from the corresponding spatial level with subdi-
vision level 0, i.e., J = 1 (line 4). Assuming the fetched BRDF to
be characterized by rrr ∈ R3, the length of this vector ‖rrr‖ then indi-
cates how concentrated the mean directions of constituent BRDFs
are. For example, if all these BRDFs have approximately the same
mean direction (i.e., µµµ), ‖rrr‖ will be close to 1. On the other hand,

submitted to Eurographics Symposium on Rendering (2017)

Xu et al. / Real-Time Linear BRDF MIP-Mapping 5

when the constituent BRDFs have widely varying µµµ, ‖rrr‖ will be
close to 0. Based on this observation, we use ‖rrr‖ as a metric to de-
termine whether a finer subdivision (i.e., greater J) should be used.
In particular, we iteratively increase the level of angular subdivi-
sion until ‖rrr‖ exceeds some threshold (i.e., ε0 and ε1 in lines 5–
19).‡ Once the characteristic vector rrr is determined for each pixel,
we use Eq. (15) to construct the corresponding effective BRDFs
(lines 23–27).

We use two types of light sources, point and environmental, to
generate all rendered results. For point sources, the effective BRDF
is directly used to evaluate the final shading. For environmental
lighting, we leverage pre-filtered environment maps [KVHS00] for
efficient shading computation.

5. Results

We implement our algorithm in Microsoft DirectX 11 on a PC with
Intel Core i7 CPU and NVIDIA Quadro M4000M graphics card.
Since our method does not rely on any scene-specific precomputa-
tion (and computes everything from scratch per frame), it supports
highly dynamic scenes with changing lighting, viewpoint, geome-
try, and even BRDFs.

5.1. Evaluations

To evaluate our new BRDF MIP-mapping technique, we compare
images rendered with our approach with those generated with se-
veral other methods including direct sampling, LEAN, and LE-
ADR.

We start with two simple scenes, as shown in Figure 4, each
of which contains a planar base geometry with spatially varying
BRDFs. On the top of Figure 4, we show a plane with two dif-
ferent base BRDFs in a checkerboard pattern and fixed normals
(i.e., no shading normal). Direct sampling, which computes only
one shading sample per pixel, suffers from aliasing artifacts. The
LEAN mapping provides a non-linear filtering on normals but lacks
the ability to handle spatially-varying or multi-lobe BRDFs, lea-
ding to over-blurred regions on the top of column (c). Our method
manages to closely resemble the reference.

On the bottom, we show another plane with a complex micro-
geometry represented with high-resolution normals and micro-
facet BRDFs. Direct sampling fails to resolve this micro-geometry
and produces serve aliasing. LEADR extends LEAN’s normal
map filtering framework by handling variations in the Fresnel and
shadowing terms. Unfortunately, it has difficulties handling rapidly
changing BRDFs, yielding an overly soft result, as seen on the
bottom of column (c). Our method handles the Fresnel and shado-
wing terms similarly as LEADR and better preserves the detailed
surface appearance.

5.2. Main Results

We further demonstrate the effectiveness of our approach by com-
paring rendered images for more complex virtual scenes, as shown

‡ In practice, we pick ε0 = 0.95 and ε1 = 0.85.

in Figures 1, 5, and 6. Details on the scene configurations are as
follows.

• The Pillow scene (Figure 1) uses spatially-varying BRDFs obtai-
ned from the work by Wang et al. [WRG∗09]. These BRDFs
are represented with one diffuse color map, one specular color
map and one specular coefficient map. Since the two color maps
can be linearly MIP-mapped, we only apply our BRDF MIP-
mapping to the specular coefficients.

• In the Tablecloth scene (Figure 5-top), the cloth has a two-
lobe BRDF with (µµµ0 = (

√
2

2 ,
√

2
2 ,0), κ = 128) and (µµµ1 =

(−
√

2
2 ,
√

2
2 ,0), κ = 128) respectively in the local coordinate of

nnn = (0,0,1). The normal map used on the cloth has a resolution
of 1024×1024 and is generated from a noise function.

• In the Bunny scene (Figure 5-middle), we use a 1024× 1024
normal map with hemispherical bump patterns. The BRDF on
bunny is a material map has a resolution of 1024×1024.

• The Dragon scene (Figure 5-bottom) is modeled using a 2048×
2048 normal map and a 671× 457 BRDF map tiled across the
surface.

• The Sponza scene (Figure 6) is created after Crytek’s Sponza
model with the fabric and floor textures replaced using high-
resolution BRDF and normal maps with resolutions up to 2048×
2048.

When generating the images, the direct sampling method does
not use any MIP-mapping or super-sampling and directly takes the
BRDF parameter and normal stored in the base BRDF and nor-
mal maps to compute the shading. The naïve MIP-mapping method
uses standard MIP-mapping strategy that directly averages µµµ and κ

stored in the instant BRDF map. The LEAN mapping [OB10] is a
widely used linear normal map filtering technique with its limita-
tions inherited by the LEADR mapping [DHI∗13]. Therefore, we
only compare to the LEAN mapping to show the benefits provided
by our technique.

Similar to the examples shown in §5.1, direct sampling suffers
from severe aliasing, and LEAN/LEADR has difficulties preser-
ving detailed appearance variations arising from high-frequency
shading changes. Our method, in contrast, provides a good balance
between performance and accuracy. Please see animated versions
of the results in Figures 4 and 5 in the accompanying video.

Performance. Table 1 presents the performance numbers (in com-
putation time and FPS) for all results in Figures 1, 5, and 6. Our
method takes about 1 ms to build the BRDF MIP-maps which in-
volves the construction of MIP-mapped vMF characteristic vectors
at multiple subdivision levels. As discussed in §4, our implemen-
tation uses three levels, which is only slightly slower than building
a single level due to the constant CPU and GPU overhead intro-
duced by multiple rendering stages. With our BRDF MIP-maps,
the final shading process usually takes 0.6–0.9 ms per frame. This
level of efficiency makes our method suitable for many real-time
applications. Compared with linear-filtering based techniques, our
method better preserves the reflectance details. Compared with he-
avy super-sampling, on the other hand, our method is significantly
faster (by one order of magnitude in our examples) while offering
similar result quality. Lastly, our method is more memory efficient
than LEAN as the latter stores and filters the first and second mo-

submitted to Eurographics Symposium on Rendering (2017)

6 Xu et al. / Real-Time Linear BRDF MIP-Mapping

(a) Reference (b) Direct sampling (c) LEAN (d) Ours

(a) Reference (b) Direct sampling (c) LEADR (d) Ours

Figure 4: Comparison of renderings of two planar surfaces generated with direct sampling (b), LEAN/LEADR (c), and our method (d).
The insets in white rectangles show close-up views of the two planes.

Table 1: Statistics of example scenes. From left to right: scene, types of BRDFs, resolution of BRDF map, and the performance costs of
Direct Sample, naïve MIP-mapping, reference and our method. The reference is rendered using 64× supersampling. We report the averaged
milliseconds and corresponding FPS.

Scene Map Res.
Performance (in millisecond/FPS)

Direct MIP-map LEAN Ref.
Our Method

MIP-mapping Shading Total
Pillow (Fig 1) 2048×1024 0.6/1228 0.6/1231 0.9/826 59/17 0.9 0.9 2.0/489
Tablecloth (Fig 5) 1024×1024 0.4/1637 0.4/1621 0.7/1037 50/20 0.8 0.7 1.6/623
Bunny (Fig 5) 1024×1024 0.5/1397 0.5/1384 0.8/967 51/19 0.9 0.8 1.8/553
Dragon (Fig 5) 2048×2024 0.5/1289 0.6/1296 0.8/898 54/18 1.1 0.6 1.7/643
Sponza (Fig 6) 2048×2048 1.6/589 1.6/596 1.9/454 97/10 1.3 1.2 2.5/371

ments of normal distributions while ours only store a unnormalized
vector rrr for each vMF distribution.

5.3. Limitations and Future Work

Our method does have some limitations that can encourage furt-
her research in this direction. Firstly, even with the filtering of ef-
fective BRDFs achieved using linear summations of their charac-
teristic vectors, the computational cost of our approach is still hig-
her than hardware-accelerated naïve texture MIP-mapping due to
the overhead incurred by multiple stages of the rendering process.
Thus, faster computation and summation of characteristic vectors
for vMFs are worthy exploring in future. Secondly, our method uses
the length of characteristic vectors as a metric to determine whet-

her the underlying lobes are concentrated. This metric, however,
may lead to unnecessary subdivisions and reduced performance for
highly diffuse materials as the base BRDFs already have short cha-
racteristic vectors. One way to address this problem is to store ad-
ditional information, such as the variance, of the vectors. Thirdly,
our method does not optimize temporal coherence, which can lead
to animated results with small amounts of temporal noise (as seen
in the accompanying video). Extending our technique to pre-filter
not only spatially but also temporally varying contents is an inte-
resting topic for future research. Lastly, Our method will need to
be extended to handle BRDFs that cannot be well approximated
with a small number of vMF distributions (e.g., highly anisotropic
BRDFs).

submitted to Eurographics Symposium on Rendering (2017)

Xu et al. / Real-Time Linear BRDF MIP-Mapping 7

(a) Reference (b) Direct sampling (c) LEAN (d) Ours

Figure 5: Comparison of renderings generated with direct sampling (b), LEAN (c), and our method (d). The insets in white rectangles
show highly zoomed views of each reference materials. Please see Table 1 for the performance numbers.

6. Conclusion

In this paper, we present a novel technique to linearly MIP-map
BRDF and normal maps in a joint manner. The key of our appro-
ach is to represent effective BRDFs as von Mises-Fisher (vMF)
distributions characterized with unnormalized vectors. Under this
representation, averaging vMFs can be performed efficiently and
at real-time through a linear summation of their characteristic vec-
tors. To handle complex distributions, we introduce a new method

to fit vMF mixtures by subdividing the angular domain, offering a
good balance between resulting accuracy and performance. We im-
plement this technique on the GPU in three steps. Given the base
BRDF and normal maps, we start with generating an instant BRDF
map. Its MIP-mapped versions are then computed based on line-
arly mixed vMF distributions. Lastly, at each pixel, the effective
BRDF is constructed before obtaining the final shading color. Our
method is very fast, easy to implement, and requires no precom-

submitted to Eurographics Symposium on Rendering (2017)

8 Xu et al. / Real-Time Linear BRDF MIP-Mapping

(a) Reference (b) Direct sampling

(c) LEAN (d) Ours

Figure 6: Comparison of renderings of a modified Sponza scene with direct sampling (b), LEAN (c), and our method (d). The insets show
highly zoomed views of different materials.

putation. Experiments demonstrate that our technique is capable of
MIP-mapping BRDF and normal maps, even with high-frequency
variations, at real-time while preserving high-quality reflectance
details.

Acknowledgement

This work was partially supported by National Key R&D Pro-
gram of China (No. 2016YFB1001503), NSFC (No. 61472350),
the Fundamental Research Funds for the Central Universities (No.
2017FZA5012).

References

[Bli77] BLINN J. F.: Models of light reflection for computer synthesized
pictures. SIGGRAPH Comput. Graph. 11, 2 (1977), 192–198. 3

[BN12] BRUNETON E., NEYRET F.: A survey of nonlinear prefiltering
methods for efficient and accurate surface shading. IEEE Transactions
on Visualization and Computer Graphics 18, 2 (2012), 242–260. 2

[DHI∗13] DUPUY J., HEITZ E., IEHL J.-C., POULIN P., NEYRET F.,
OSTROMOUKHOV V.: Linear efficient antialiased displacement and re-
flectance mapping. ACM Trans. Graph. 32, 6 (2013), 211:1–211:11. 2,
5

[HSRG07] HAN C., SUN B., RAMAMOORTHI R., GRINSPUN E.: Fre-
quency domain normal map filtering. ACM Trans. Graph. 26, 3 (2007),
28:1–28:12. 2, 3

[Kaj86] KAJIYA J. T.: The rendering equation. SIGGRAPH Comput.
Graph. 20, 4 (1986), 143–150. 2

[KB08] KRAUS M., BÜRGER K.: Interpolating and downsampling
RGBA volume data. In VMV (2008), pp. 323–332. 2

[KVHS00] KAUTZ J., VÁZQUEZ P.-P., HEIDRICH W., SEIDEL H.-P.:
Unified approach to prefiltered environment maps. In Proceedings of the
Eurographics Workshop on Rendering Techniques 2000 (London, UK,
UK, 2000), Springer-Verlag, pp. 185–196. 5

[OB10] OLANO M., BAKER D.: Lean mapping. In Proceedings of the

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(2010), pp. 181–188. 1, 2, 5

[SKMH14] SICAT R., KRUGER J., MOLLER T., HADWIGER M.: Sparse
PDF volumes for consistent multi-resolution volume rendering. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (2014),
2417–2426. 2

[TLQ∗05] TAN P., LIN S., QUAN L., GUO B., SHUM H.-Y.: Multire-
solution reflectance filtering. In EuroGraphics Symposium on Rendering
(2005), pp. 111–116. 2

[TLQ∗08] TAN P., LIN S., QUAN L., GUO B., SHUM H.: Filtering and
rendering of resolution-dependent reflectance models. IEEE Transacti-
ons on Visualization and Computer Graphics 14, 2 (2008), 412–425. 2

[Tok05] TOKSVIG M.: Mipmapping normal maps. Journal of graphics,
GPU, and game tools 10, 3 (2005), 65–71. 2

[TS67] TORRANCE K. E., SPARROW E. M.: Theory for off-specular
reflection from roughened surfaces. JOSA 57, 9 (1967), 1105–1112. 3

[Wil83] WILLIAMS L.: Pyramidal parametrics. SIGGRAPH Comput.
Graph. 17, 3 (1983), 1–11. 1

[WRG∗09] WANG J., REN P., GONG M., SNYDER J., GUO B.: All-
frequency rendering of dynamic, spatially-varying reflectance. ACM
Trans. Graph. 28, 5 (Dec. 2009), 133:1–133:10. 3, 5

[XWB15] XU C., WANG R., BAO H.: Realtime rendering glossy to
glossy reflections in screen space. Computer Graphics Forum 34, 7
(2015), 57–66. 2, 3

[YHJ∗14] YAN L.-Q., HAŠAN M., JAKOB W., LAWRENCE J.,
MARSCHNER S., RAMAMOORTHI R.: Rendering glints on high-
resolution normal-mapped specular surfaces. ACM Trans. Graph. 33,
4 (2014), 116:1–116:9. 2

[YHMR16] YAN L.-Q., HAŠAN M., MARSCHNER S., RAMAMOORTHI
R.: Position-normal distributions for efficient rendering of specular mi-
crostructure. ACM Trans. Graph. 35, 4 (2016), 56:1–56:9. 2

[ZWDR16] ZHAO S., WU L., DURAND F., RAMAMOORTHI R.: Do-
wnsampling scattering parameters for rendering anisotropic media. ACM
Trans. Graph. 35, 6 (2016). 2

submitted to Eurographics Symposium on Rendering (2017)

