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Figure 1: We introduce a new technique that combines implicit and explicit geometric representations to solve physics-based inverse-
rendering problems. When optimizing object geometry, our technique is capable of deforming simple spheres into detailed shapes with
complex topologies. In this figure, we show re-renderings of 3D models (i.e., objects on the table and the chair behind them) reconstructed
individually using our technique.

Abstract

Mathematically representing the shape of an object is a key ingredient for solving inverse rendering problems. Explicit repre-
sentations like meshes are efficient to render in a differentiable fashion but have difficulties handling topology changes. Implicit
representations like signed-distance functions, on the other hand, offer better support of topology changes but are much more
difficult to use for physics-based differentiable rendering. We introduce a new physics-based inverse rendering pipeline that uses
both implicit and explicit representations. Our technique enjoys the benefit of both representations by supporting both topology
changes and differentiable rendering of complex effects such as environmental illumination, soft shadows, and interreflection.

We demonstrate the effectiveness of our technique using several synthetic and real examples.

1. Introduction

Inverse rendering—the inference of object shape and appearance
from 2D images—has been a long-standing problem in computer
vision and graphics.

A key ingredient to solving inverse-rendering problems is the
mathematical description of object surfaces. Previously, most vi-
sion and graphics applications utilize explicit representations like
polygonal meshes that enjoys high flexibility and easy editabil-
ity. Additionally, state-of-the-art physics-based differentiable ren-
dering techniques—which requires Monte Carlo sampling over
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not only object surfaces, but also discontinuity (e.g., visibility)
boundaries—have largely focused on mesh-based representations.
However, when solving inverse-rendering problems using gradient-
based methods, explicit representations suffer from one major lim-
itation: the difficulty in handling topology changes. This causes
most existing mesh-based inverse rendering technique to require
good initial geometry and/or frequent remeshing during optimiza-
tion.

On the contrary, implicit geometric representations define a sur-
face as the zero level set of some function (such as signed-distance
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functions). Compared to their explicit counterparts, these represen-
tations enjoy a major advantage of allowing easy topology changes
and, therefore, have been gaining popularity for solving inverse-
rendering problems. However, implicit representations suffer from
their own limitations. First, computing the intersection between
a ray and an implicit surface (using, for example, sphere trac-
ing [Har96]) can be much more expensive than computing inter-
sections with polygons (like triangles). More importantly, since
implicitly expressed surfaces are known to be difficult to param-
eterize, Monte Carlo sampling over these surfaces (or curves em-
bedded in them) is also challenging. This makes it difficult to
adopt state-of-the-art physics-based differentiable rendering meth-
ods [LADL18,ZWZ*19,ZMY *20] to handle implicit surfaces.

In this paper, we introduce a new physics-based inverse render-
ing technique that uses both implicit and explicit representations
and, thus, enjoys the benefits of both worlds. Taking as input a col-
lection of (geometrically calibrated) input images, our technique
is capable of generating high-quality 3D reconstructions of object
shape and appearance without the need of good initial geometries.
The output of our technique is in “standard” format (i.e., a mesh
with spatially varying BRDF maps) and enjoys easy editability and
wide applicability.

Concretely, our contributions include:

e A physics-based differentiable rendering method for implicit
surfaces (§4.1). Leveraging differentiable iso-surface extrac-
tion [RLR*20, GRL*21], we first convert an implicit surface to
the corresponding explicit form (i.e., a mesh), and then apply
physics-based differentiable rendering to the mesh. We demon-
strate that, compared to existing differentiable-sphere-tracing
based methods (e.g., [NMOG20, YKM*20)), our pipeline is not
only more general—by supporting more complex light-transport
effects such as environmental illumination, soft shadow, and
interreflection—but also computationally more efficient.

e A two-stage inverse-rendering pipeline (§4.1 and §4.2) that en-
ables high-fidelity 3D reconstruction of objects with complex
topologies.

We demonstrate the effectiveness of our technique via several syn-
thetic and real examples.

2. Related Works

Shape and reflectance reconstruction. Reconstructing the shape
and/or reflectance of an object has been a central problem
in computer vision. Many techniques like multi-view stereo
(MVS) [SD99,VTC05,SZPF16], shape from shading (S£S) [Hor70,
IH81, QMC*17], and photometric stereo (PS) [Woo80, HLHZO0S,
ZT10, QMDI16] have been developed to recover object geome-
try and reflectance. Unfortunately, these techniques typically only
recovers diffuse albedo for reflectance. Further, they rely on as-
sumptions about object appearance—such as diffuse-dominated
reflectance or being sufficiently textured—and can produce low-
quality reconstructions if these assumptions are violated.

Recently, Luan et al. [LZBD21] have demonstrated that, us-
ing physics-based differentiable rendering [LADL18, ZWZ*19,
ZMY *20], the reconstruction of object shape and reflectance can

be formulated as an inverse rendering (aka. analysis by synthesis)
problem and solved using gradient-based methods. This technique
offers high generality and robustness as it relies on few assump-
tions about object shape or appearance. On the other hand, since
their method is fully mesh-based, it has difficulties refining object
topology and, therefore, requires nontrivial initialization of object
geometry (by, for example, using COLMAP [SZPF16]).

In this paper, we address this problem by using both implicit and
explicit representations for object geometry.

Differentiable rendering of meshes. Specialized differen-
tiable renderers have long existed in computer graphics
and vision [GZB*13, GLZ16, ALKN19, TSG19, CLZ*20].
Recently, several  general-purpose ones like red-
ner [LADLIS], Mitsuba 2 [NDVZJ19], and psdr-cuda
[ZMY*20] have been developed. A key technical challenge in
differentiable rendering is to estimate gradients with respect to
object geometry (e.g., positions of mesh vertices). To this end,
several approximated methods [LLCL19, LHJ19, RRN*20] have
been proposed. Unfortunately, inaccuracies introduced by these
techniques can lead to degraded result quality, as demonstrated by
Luan et al. [LZBD21]. On the contrary, recent techniques specifi-
cally handling visibility boundaries [LADL18,ZWZ*19,ZMY *20]
provides unbiased gradient estimates capable of producing higher-
quality reconstructions.

Differentiable rendering of implicit surfaces. Forward render-
ing of implicit surfaces has been studied long ago, and techniques
like sphere tracing [Har96] have allowed efficient rendering of im-
plicit geometries. Differentiable rendering implicit surfaces, on the
other hand, used to be largely under-explored. Several recent works
(e.g, DVR [NMOG20] and IDR [YKM™*20]) have derived differen-
tiable sphere tracing—which differentiates the ray-implicit-surface
intersection computations—and introduced inverse-rendering solu-
tions based on this technique. Unfortunately, physics-based ren-
dering is beyond ray-surface intersection: To support effects like
full-pixel anti-aliasing, area and environmental illumination, soft
shadows and interreflection, contributions of rays need to be inte-
grated (over a pixel or the hemisphere). Differentiating these in-
tegrals for implicit surfaces is challenging. In a concurrent work,
Vicini et al. [VSJ22] have introduced a new technique for differ-
entiable rendering SDFs. We consider comparisons between this
approach and our technique—and potential combinations of the
two—interesting future topics.

We overcome this challenge by using meshes as an intermedi-
ate representation, which can then be rendered using state-of-the-
art mesh-based methods [LADLI1S, ZWZ*19, ZMY*20]. To our
knowledge, although the high-level idea of using explicit and im-
plicit geometries has been experimented before in different con-
texts (e.g., generative 3D modeling [PFAK20]), our technique is
one of the first (among concurrent works like [MHS*22]) to realize
this idea for physics-based inverse rendering.

Differentiable mesh generation. Recently, several techniques
have been developed to generate meshes in a differentiable fash-
ion. Remelli et al. [RLR*20], for instance, have introduced
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MeshSDF—a differentiable marching cube algorithm that con-
verts signed-distance functions (SDFs) into meshes. This tech-
nique was later extended to handle general implicit representa-
tions [GRL*21]. Additionally, Peng et al. [PJL*21] have presented
a technique that creates meshes from point clouds. We utilize
MeshSDF in our differentiable rendering pipeline.

3. Preliminaries on Differentiable Rendering

In what follows, we briefly revisit some key aspects in physics-
based differentiable rendering. For more comprehensive introduc-
tions, please refer to recent surveys and course materials (e.g,
[KBM*20, ZJL20]).

Physics-based differentiable rendering. At the core of physics-
based (forward) rendering is the rendering equation [Kaj86]. This
integral equation states that, on a non-emissive surface M, the ra-
diance L leaving some point x € M with direction ®, € S?is given
by:

Lix.o) = [ Lilx.o) flx. 05, 00)do (). )

where L; denotes incident radiance; f; is the cosine-weighted
BRDF (given by the original BRDF multiplied with the dot product
of the incident direction ®; and the surface normal at x); and G is
the solid-angle measure.

Recent works in physics-based differentiable render-
ing [LADL18, ZWZ*19, ZMY*20] have shown that, in general,
differentiating the rendering equation (1) with respect to some
scene parameter 0 yields the differential rendering equation:

b0 = [ G Lx ) il 01,00)] do(w)

[ v (@) AL () filx.0r.00) (@), @)

where the right-hand side consists of two terms. The first interior
integral is simply provided by differentiating the integrand of the
rendering equation (1). The second boundary integral, on the other
hand, is unique to differentiable rendering: The domain 9S? is com-
prised of all jump discontinuity points of L; with respect to ; (as-
suming the BRDF f; to be continuous); v (®;) captures the change
rate (with respect to 0) of the discontinuity boundary at ;; and AL;
denotes the difference in L; across the boundary. We note that the
discontinuity of the incident radiance L; can arise from visibility
boundaries—which always exist regardless of how smooth the sur-
face geometries are.

In practice, when the parameter 0 controls the scene geometry
(such as the pose of an object or the position of a mesh vertex), the
boundary integral in Eq. (2) should not be neglected as it can be the
major contributor to the resulting gradient dZ/de.

Geometric representations. Physics-based forward rendering
methods have largely been agnostic to geometric representations:
Most algorithms (such as path tracing) only requires ray-surface in-
tersection to be efficiently computed—which can be achieved using
acceleration data structures (e.g., Kd-trees) for meshes and sphere
tracing [Har96] for implicit surfaces.
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Physics-based differentiable rendering techniques, on the con-
trary, are more dependent on geometric representations due to their
need for estimating the boundary integral in Eq. (2). When the
scene geometries are expressed using meshes, the discontinuities
curves 0S? are simply (projected) face edges. When the scene ge-
ometries are implicit, on the other hand, so are the discontinu-
ities curves. Although there are prior works capable of generating
(approximately) uniform point samples on implicit curves/surfaces
(e.g., [WHO94]), they are generally unsuitable for estimating inte-
grals since the probability distributions remain unknown. To over-
come this obstacle, we introduce a new pipeline in §4.1 that com-
bines implicit and explicit representations.

4. Our Method

We now present our technique that combines implicit and explicit
geometries for physics-based inverse rendering.

Our optimization pipeline involves the following two main
stages. The first implicit stage utilizes implicit representations like
signed-distance functions (SDFs) for the object geometry. The
main objective of this stage is to obtain a coarse reconstruction of
the object’s 3D shape with the right fopology. Since implicit ge-
ometries are used in this stage, the optimization enjoys the flexibil-
ity of allowing topology changes.

Our second explicit stage, on the contrary, is purely mesh-based.
Specifically, this stage starts with taking the implicit geometry from
the previous stage and applying (non-differentiable) iso-surface ex-
traction to obtain the corresponding explicit expression. Then, we
jointly optimize the object shape (by changing mesh vertex po-
sitions) and appearance (by changing pixel values in SVBRDF
maps).

In what follows, we detail each of the two stages.

4.1. Implicit Stage

Our implicit stage computes coarse reconstructions of an object’s
shape and appearance. In this stage, the object surface M C R is
represented implicitly as the zero level set of some function ¢ that
is, in turn, controlled by some abstract set of geometric parame-
ters g. Namely,

M(8g) = {xe R® : o(x; 0g) :0}. 3)

Additionally, to describe the appearance of the object, we utilize
the microfacet BRDF model. For any surface point x € M (6g),
we specify the diffuse albedo kg4, specular albedo ks, and surface
roughness o at this point using a reflectance field B controlled by
an abstract set of optical parameters 0,:

Differentiable rendering. To render the surface represented with
M and B, as opposed to prior works that directly compute differ-
entiable ray intersection against the SDF ¢, we instead (i) apply dif-
ferentiable iso-surface extraction (e.g., MeshSDF [RLR*20]) to ob-
tain a triangle mesh M ~ M, and (ii) use physics-based differen-
tiable rendering to render this mesh. As illustrated in Figure 2, this
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Figure 2: Our pipeline for physics-based differentiable rendering of implicit surfaces: Instead of directly rendering implicit geometry using
techniques like differentiable sphere tracing, we leverage differentiable iso-surface extraction to covert implicit geometries into explicit ones
(i.e., meshes) and render the latter using state-of-the-art differentiable rendering techniques capable of handling complex light-transport

effects like environmental/area lighting, soft shadows, and interreflection.

process effectively implements a render function R (g, 6a,0s) that
takes as input the geometric parameters 8¢ and optical ones 0,—
among other scene parameters 05 such as illumination and viewing
conditions—and returns an image.

Note that, since the conversion from the implicit representation ¢
to the mesh M is differentiable, the gradients of mesh vertex posi-
tions with respect to the geometric parameters 6g are automatically
available during differentiable rendering. This makes the entire ren-
dering function R end-to-end differentiable (with respect to 0g).

Inverse-rendering optimization. Similar to prior works, we take
as input n images Z; of an object with known illumination and

viewing conditions Gé., for j = 1,2,...,n. Then, we reconstruct
the shape and appearance of the object by solving the following
inverse-rendering optimization:

(65,65 ) = argmin £ (6g,0a), 5)
0,.8

64
where the loss L is further given by
ﬁ(eg,ea) == leg(eg,ea) +7\/reg Lreg(eg7ea). (6)

In Eq. (6), Limg denotes the image loss given by

@)

n .
Cimg(02,6) = Y | (65.00,6") 1, | .
j=1
and Lreg is a regularization term with a hyper-parameter Areg €
R controlling its weight. Optionally, when each input image Z; is
supplemented with an anti-aliased mask image S, our optimization
can get mask supervision by including an extra loss term:

‘Rmask (eg7e§")) - S‘,-) ®)

n
7"mask »Cmask(eg) = Z N
j=1
where Ry 1S similar to the rendering function R but re-
turns only an anti-aliased mask. In practice, R(eg,ea,eg’)) and

Rmask (B¢, 9@) can be computed simultaneously from one render-
ing pass.

Discussion. By using both implicit and explicit geometries, our ap-
proach enjoys the benefit of both representations: It not only allows
topological changes during the optimization, but also is capable of

capturing light transport effects—such as environmental illumina-
tion and soft shadows—that cannot be easily handled by soft ras-
terizers or differentiable sphere tracers. We will demonstrate the
practical advantage of our technique in §5.

4.2. Explicit Stage

Based on the coarse reconstruction provided by our implicit stage
(§4.1), our explicit stage further refines the result using a purely
mesh-based approach. To start, we convert the implicit represen-
tation returned by the previous stage into its explicit counterpart.
Specifically, we apply iso-surface extraction (e.g., marching cube)
to the optimized function (-;083) returned by the previous stage
and obtain a mesh M. We note that this extraction step does not
need to be differentiable since it is essentially a preprocessing step
for the explicit stage.

Provided the initial mesh M, we then use the boundary first
flatting (BFF) method [SC17] to UV-parameterize the mesh and, in
turn, generate the spatially varying BRDF (SVBRDF) maps based
on the reflectance field B(+;0; ) given by the implicit stage.

Using this mesh and the SVBRDF maps for the initial geome-
try and appearance, respectively, we then apply a second inverse-
rendering optimization. Our pipeline is based on the mesh-based
framework introduced by Luan et al. [LZBD21] and jointly opti-
mizes the position of each mesh vertex and the value of each pixel
in the SVBRDF maps. Additionally, we utilize the recent work
by Nicolet et al. [NJJ21] to update mesh vertex positions—as op-
posed to using the el Topo geometric processing library [BB09]
like Luan et al. did. This has led to significantly better performance
in practice, since it does not require expensive (continuous) colli-
sion detection and handling.

4.3. Implementation Details

For our implicit stage (§4.1), we adopt the neural networks from
the idr work by Yariv et al. [YKM*20]. Specifically, we use their
occupancy network for our function ¢ and adopt their rendering
network for our reflectance field B. In this case, the geometric pa-
rameters 0g and optical ones 6, become weights of edges in the two
neural networks, respectively.
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Figure 3: We validate the correctness of gradients computed by
our method (§4.1) by comparing to finite-difference references.
Each derivative image is computed with respect to the weight of
one edge in the occupancy network (which specifies the implicit
surface).

Further, we set the regularization loss as

Lreg(8g,0a) = ¥ (V2 0(x1:6g) || — 1), ©)

1

that encourages ¢ to be a signed-distance function (i.e., with unit-
length gradients).

We utilize the MeshSDF technique [RLR*20] for differentiable
iso-surface extraction and cache the BRDF parameter values (i.e.,
diffuse albedo kg, specular albedo ks, and surface roughness o) at
each mesh vertex (as opposed to evaluate the neural reflectance
field 3 per pixel on the fly) for better rendering performance. Ad-
ditionally, during optimization, we reuse one mesh produced by
MeshSDF to render multiple camera views (from the same mini-
batch), further reducing the amortized computational overhead.

Lastly, we build our Monte Carlo differentiable renderer—
which is used in both stages—based on Zhang et al.’s path-space
technique [ZMY*20] and use the Adam method [KB14] imple-
mented in pyTorch for our inverse-rendering optimizations in
both stages—except for updating mesh vertex positions in the ex-
plicit stage where we use Nicolet et al.’s approach [NJJ21].

5. Results

In what follows, we validate in §5.1 our differentiable rendering
of implicit surfaces. Then, we demonstrate the effectiveness of our
inverse-rendering technique in §5.2. Please refer to the supplement
for more results.

5.1. Validation

We validate our differentiable rendering of implicit surfaces (de-
scribed in §4.1) by comparing gradient images (with respect to the
weight of one edge in the occupancy network) generated with our
method and finite differences (FD), as shown in Figure 3. In this fig-
ure, each derivative image is computed with respect to the weight
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Table 1: Performance statistics for our inverse-rendering results
in Figures 4, 5, and 6. The “MC” column shows the grid resolution
used for differentiable iso-surface extraction. The “Time” column
contains per-iteration optimization time (in seconds) measured on
a workstation with an NVIDIA Titan RTX graphics card.

# Input Implicit stage Explicit stage
Example images | MC #Iter. Time | #Iter. Time
Bunny temple 9 [ 96° 1000 1.19| 1000 0.73
Chair 196 | 1283 300 9.24 500 271
Frame 96 | 1283 3500 11.24 700  1.35
Pegasus 396 | 96° 2000 5.69 200 3.14
Chess 74 | 1283 400  2.49 200 3.34
Teapot 135 | 1283 1000  4.66 200  3.51
Leopard 132 | 96 1500 6.32 500 347
Head 126 | 96 750  5.97 350  3.38

of one edge in the occupancy neural network representing ¢. When
generating the ordinary and finite-difference (FD) results, we use
sphere tracing to compute ray-surface intersection directly (with-
out converting the implicit representations to meshes). The results
demonstrate that gradients estimated by our method closely match
the FD references. The stair-case-like artifacts in our results are
caused by the use of marching cube with relatively low grid resolu-
tions. Fortunately, as we will demonstrate in the rest of this section,
these approximations do not affect the performance of our inverse-
rendering solution.

5.2. Inverse-Rendering Results

We now demonstrate the effectiveness of our technique using a few
inverse-rendering results. Please refer to Table 1 for performance
numbers and the supplement for additional error visualizations and
recovered SVBRDF maps.

Synthetic results. We compare our inverse-rendering pipeline with
a few baselines using several synthetic examples in Figure 4. The
first baseline—which we denote as IDR*—is a modified version
of the IDR technique [YKM™20] where the neural rendering net-
work is replaced with a neural reflectance field (NeRF) that out-
puts per-pixel BRDF parameters. Using these parameters with ray-
surface intersection results provided by differentiable sphere trac-
ing, we implemented a (differentiable) physics-based shading step
that produces the final rendered image. Our second baseline is a
purely mesh-based method that directly applies our explicit stage
(§4.2). We set the initial geometry for IDR« and our implicit stage
using network weights from IDR that lead to sphere-like shapes
(see Figure 4-b). For the mesh-based baseline, we obtain the initial
mesh by applying (non-differentiable) iso-surface extraction to the
initial implicit geometry. As the IDR« baseline supports only one-
bounce light transport, we configure all methods to render direct
illumination only.

The bunny temple example in Figure 4 has a bunny sitting
within a temple-like structure, leading to a fairly complex overall
topology. In this example, we use 96 target images under collocated
configurations (that is, with a point light source collocated with
the camera) for all methods and show renderings from one novel
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Figure 4: Inverse-rendering comparisons: We show reconstruction results generated using IDR*—a modified version of IDR that uses
physics-based shading—in (c), Luan et al.’s mesh-based method [LZBD21] in (d), our implicit stage in (el), and our full pipeline in (e2). All
methods shared identical initializations shown in (b). The numbers below each reconstruction result indicate the Chamfer [BTBW77] and
Hausdorff [ASCE02] distances between the reconstructed and groundtruth geometries (normalized so that the GT has a unit bounding box).
Additionally, we show genus numbers of all results to validate their topologies.

viewing direction in the figure. Initialized with a sphere-like geom-
etry (Figure 4-b), IDR* successfully recovers the overall shape of
the object but fails to recover some geometric details of the bunny
(Figure 4-c). The mesh-based method, on the contrary, successfully
recovers some of the details but fails to obtain correct overall topol-
ogy (Figure 4-d).

Our implicit stage behave similarly to IDR«: It recovers slightly
fewer geometric details (Figure 4-e1) but runs approximately 3.2 x
faster: under identical configurations, our method takes 1.19 sec-
onds per iteration while IDR« takes 3.90 seconds. This is because
(i) we use relatively coarse (i.e., 96° ) grids for iso-surface extrac-
tions, introducing low computational overhead; and (ii) our un-
derlying differentiable renderer is much faster than IDR’s sphere-
tracing-based implementation. Initialized with results from our im-
plicit stage, our explicit stage successfully recovers the geometric
details and produces a reconstruction with the best quality (Fig-
ure 4-¢2).

The chair example in Figure 4 involves a chair with spatially
varying reflectance under environmental lighting. We use 196 tar-
get images and show renderings under one novel view (top) and
one novel illumination (bottom). The IDR+ baseline does not apply
here due to the need to estimate the boundary integrals in Eq. (2)—
which is challenging since the domain of integration oS? is implicit.
The mesh-based method is still applicable. But similar to the pre-
vious example, it has difficulties recovering the overall topology
and introduces self intersections (Figure 4-d). Our implicit stage—
thanks to its use of meshes as an intermediate representation—is

capable of perform differentiable rendering under environmental
illumination and successfully returns a coarse reconstruction of the
chair (Figure 4-el). This result is further refined by our explicit
stage, leading to a high-fidelity reconstruction (Figure 4-¢2).

We show two additional inverse-rendering results in Figure 5.
For both examples, our implicit stage successfully produces coarse
reconstructions with correct overall topology. These reconstruc-
tions are then refined by our explicit stage to recover the geometric
and reflectance details.

Real results. We further apply our technique to reconstruct the
shape and reflectance of real objects, as shown in Figure 6. We take
photographs of these objects under indoor illumination with two
bright area lights to better show specular highlights. Our technique
accurately recovers the fine textures for the chess, the detailed sur-
face geometries for the teapot, the glossiness for the chess and
the leopard, and the large hole for the head model—all based on
sphere-like initial shapes.

Proof-of-concept example. To further motivate the advantage of
our physics-based differentiable rendering of implicit surface, we
show three proof-of-concept synthetic examples with prominent
global-illumination effects in Figure 7. The top and middle exam-
ples show Cornell boxes containing two glossy kitty models and
two rough glass spheres, respectively. The bottom example involves
the same rough-glass object lit by a small area light. For all exam-
ples, we take as input multiple images (100 for the top, and 26
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(b) Ours (implicit)

Chamfer distance: 0.0068
Hausdorff distance: 0.0222
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Figure 5: Inverse-rendering results (synthetic): Renderings of groundtruth (a) and reconstructed models generated by our implicit stage (b)
and full pipeline (c). The left image in each column is rendered using the training illumination and a novel viewing angel; The right image
is rendered using novel illumination and viewing conditions. All optimizations use the same initializations for the occupancy network (that
vield sphere-like shapes similar to Figure 4-b) and neural reflectance fields (that produce near-constant BRDF parameters).

for the middle and bottom examples) of the object (with varying
known orientations) and solve for the shape of the object. We note
that differentiating these renderings cannot be handled by existing
differentiable renderers: Soft rasterizers and simple ray tracers have
difficulties handling light-transport effects like soft shadows and in-
terreflection; existing physics-based differentiable renderers, on the
other hand, cannot be easily adopted to render implicit geometries.

Thanks to our new differentiable rendering pipeline described in
§4.1, for all examples, our inverse-rendering technique manages to
recover the target shapes using initializations with varying topolo-
gies. We believe that the new level of generality enabled by our
technique will enable interesting future applications in computer
graphics, vision, and computational imaging.

6. Discussion and Conclusion

Limitations and future work. When jointly optimizing shape
and spatially varying reflectance, the inverse-rendering problem
can be under-constrained, causing illumination or geometric de-
tails to be “baked” into textures. Our technique, likely many (if not
most) inverse-rendering techniques, can suffer from this problem—
specifically when provided relatively few input images. Overcom-
ing this challenge requires devising discriminative losses and ef-
fective regularizations, which we believe is an important topic for
future research.

Additionally, the MeshSDF library [RLR*20] relies on march-
ing cube with regular grids. Improving this step to more efficiently
capture geometric details will allow our implicit stage to produce
finer reconstructions, reducing the amount of refinement needed for
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the explicit stage. Also, extending our pipeline to use other forms of
differentiable mesh generation (e.g., [PJL*21]) is worth exploring.

Conclusion. We introduced a new physics-based inverse rendering
technique that uses both implicit and explicit representations of ob-
ject geometry. A key component of our technique is a new physics-
based differentiable renderer for implicit surfaces: Instead of using
differentiable sphere tracing, our method leverages differentiable
iso-surface extraction to produce an intermediate mesh, and render
this mesh using physics-based differentiable rendering. Our tech-
nique enjoys the benefits from both implicit and explicit represen-
tations by allowing easy topology changes and supporting complex
light-transport effects like environmental illumination, soft shad-
ows, and interreflection.
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