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Figure 1: Our results combining programmable shaders and global illumination: a movie character with 11 million triangles rendered using
the Kajiya-Kay shader (left); a glossy ball with a marble-like pattern generated by a procedural shader (center); a pillow using a shader that
implements a spatially varying BRDF (right). (l), (r) are rendered with multidimensional lightcuts, and (c) is rendered using photon mapping.

Abstract

This paper describes a technique to automatically adapt pro-
grammable shaders for use in physically-based rendering algo-
rithms. Programmable shading provides great flexibility and power
for creating rich local material detail, but only allows the material
to be queried in one limited way: point sampling. Physically-based
rendering algorithms simulate the complex global flow of light
through an environment but rely on higher level information about
the material properties, such as importance sampling and bounding,
to intelligently solve high dimensional rendering integrals.

We propose using a compiler to automatically generate interval
versions of programmable shaders that can be used to provide the
higher level query functions needed by physically-based rendering
without the need for user intervention or expertise. We demonstrate
the use of programmable shaders in two such algorithms, multidi-
mensional lightcuts and photon mapping, for a wide range of scenes
including complex geometry, materials and lighting.
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1 Introduction

Shading algorithms in graphics span two extremes: physically-
based approaches that aim to accurately capture the global interac-
tions of light and materials, and programmable shading based ap-
proaches that offer a high degree of flexibility and user control. Effi-
cient physically-based algorithms typically rely on detailed mathe-
matical knowledge to derive the functionality they need and are thus
limited to well-defined analytic material models. Programmable
shaders are extremely flexible and allow for artistic control and thus
have a crucial role in the production pipelines of the film indus-
try, but their black box nature provides limited knowledge about
their mathematical properties. It is not currently possible to au-
tomatically combine the flexibility of programmable shading with
the realism and efficiency of advanced physically-based rendering.
This paper aims to bridge the gap between these two disparate ap-
proaches.

Global illumination rendering simulates the complex flow of light
and material scattering properties of the real world. Due to the high
dimensionality and complexity of the integrals, brute-force evalu-
ation is prohibitively slow. Instead efficient algorithms rely on ad-
ditional information about the material models, such as importance
sampling and bounding functions, to intelligently sample potential
light paths. However creating these functions for novel material
models requires considerable time and expertise. Thus implementa-
tions are usually limited to a small range of standard BRDF models
with well-known properties.

In applications like games and movies, programmable shading is
critical for artistic control. However, once the goal of flexibility is
achieved, these applications would often also like to leverage the
benefits and realism of physically-based algorithms robustly and
automatically. For example, existing approaches manually convert
shaders to interface with physically-based algorithms (e.g., [Tabel-
lion and Lamorlette 2004]).

We propose a system that takes programmable shaders and auto-
matically generates the additional access methods needed by ef-
ficient physically-based rendering algorithms, namely bounding
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queries and guaranteed quality importance sampling. A compiler
generates additional versions of the shader using interval arithmetic
as needed to compute upper bounds over input ranges. Adaptive im-
portance sampling functions are also generated using these interval
versions, with guaranteed quality even for very complex shaders.
We demonstrate how this approach can interface programmable
shading with rendering algorithms such as photon mapping [Jensen
1996], and lightcuts [Walter et al. 2005; Walter et al. 2006].

Our contributions include:

• Formulation of the interface between programmable shading
and physically-based shading;

• An automated compiler that respects this interface by compil-
ing shaders to create interval-based shaders that can be used
in a wide variety of rendering algorithms;

• Interval-based techniques to adaptively bound shaders, thus
enabling importance sampling and rendering with error
bounds;

• Demonstration of programmable shaders in lightcuts and pho-
ton mapping algorithms.

Our work is based on a few assumptions. The context of this re-
search is in ray tracing based applications. We also fundamentally
assume the shader is a BRDF (or close to being one), though we do
not enforce this. A user can decide if their shaders are appropriate
to use in the context of physically-based rendering. For example,
coupling an NPR shader with photon mapping might not produce
any reasonable output.

2 Related Work

There is a vast body of literature on programmable shading though
most of the focus has been on efficiently handling shaders, rather
than on generalizing the support for physically-based rendering.

Production quality shaders are often expensive to execute [Tabel-
lion and Lamorlette 2004; Jensen and Christensen 2007]. One ap-
proach to make them manageable has been through automatic sim-
plification. Olano et al. [2003] and Pellacini [2005] automatically
process shader source code to produce new shaders with reduced
computational requirements. These shaders are aimed at hardware
rendering [Olano et al. 2003] and for the REYES engine [Pellacini
2005]. However these simplified versions still perform linearly with
the number of lights and samples per pixel.

Another case for shader conversion comes from cinematic relight-
ing, in which the shaders that meet appropriate restrictions are
transformed to a format suitable for GPU execution for acceler-
ated or interactive use. Among these systems LPics [Pellacini
et al. 2005] requires the user to manually convert the shaders, while
Lightspeed [Ragan-Kelley et al. 2007] does it automatically. How-
ever these techniques do not interface with physically-based ren-
dering algorithms.

Shaders are not limited to artistic usage. Due to their flexibility they
have also been used to implement compact representations of mea-
sured real world BRDFs such as [Latta and Kolb 2002; Lawrence
et al. 2004] by storing compressed coefficients in textures and re-
constructing the functions during the shader evaluation [Olano et al.
2003; Wang et al. 2008].

There has been prior work on using interval arithmetic to analyze
shaders; the work of [Heidrich et al. 1998] is most closely related
to this paper. They generated affine interval arithmetic versions of
Renderman surface shaders to provide guaranteed-quality area sam-
pling of parametric surfaces with procedural materials. Branches

and control flow were converted to expressions using step func-
tions. The proposed applications were computing form factors in
diffuse radiosity and anti-aliased rasterization of procedural tex-
tures. While similar in general approach, our work has several key
differences. By analyzing the directional as well as the spatial com-
ponents of procedural shaders, our method can be used with a much
wider range of rendering algorithms including photon mapping and
lightcuts. Instead of step functions, we use an extension of single
static assignment (SSA) form [Cytron et al. 1991] to handle control
flow. SSA is widely used in the compiler community and has the
advantages of handling more general control flow, producing more
efficient code, and often producing tighter bounds than the equiva-
lent step-function conversion.

Interval-based analysis has been applied to ray tracing without tes-
selation [Heidrich and Seidel 1998], procedural displacement-map
shaders for adaptive tesselation [Moule and McCool 2002], or pre-
tesselation culling [Hasselgren et al. 2009] during rasterization.
Other graphics applications of interval analysis include providing
guarantees in interpolating radiance samples [Bala et al. 1999], for
intersecting implicit surfaces [Snyder 1992; Flórez et al. 2006], and
in plotting functions [Comba and Stolfi 1993; Tupper 1996].

Some prior work has reported performance gains by using more
computationally expensive interval variants such as affine [Comba
and Stolfi 1993; Heidrich et al. 1998] or Taylor [Hasselgren et al.
2009] intervals that typically produce tighter bounds. In our ex-
periments we found standard interval arithmetic to be more cost-
effective for our usage than these more complex variants but further
testing is warranted on this question.

3 Problem

In this section we formulate the problem that arises when coupling
programmable shaders with physically-based global illumination
algorithms. A shader allows us to evaluate the color contribution at
a point from a single direction or light. If we only have a few point
lights, we can compute pixels by brute-force evaluation of every
light at every pixel. However, as the light sources become more nu-
merous and complex, such as area lights, environment maps, and in-
direct illumination, this approach quickly becomes infeasible. Ad-
vanced rendering algorithms such as photon mapping and multidi-
mensional lightcuts use Monte Carlo coupled with carefully chosen
sparse sampling to compute complex illumination at much lower
cost. However to achieve this, they require that the shader support
additional types of operations beyond just evaluating the shader for
particular positions and directions. In this paper we automatically
generate two new abilities for procedural shaders: the ability to im-
portance sample directions according to the shader, and the ability
to bound the shader over spatial and/or directional regions.

Directional importance sampling is an important component in
nearly all Monte Carlo physically-based rendering algorithms, in-
cluding path tracing, photon mapping and all algorithms built on
them. Bounding is less widely used in rendering but can be an es-
sential component in robust scalable algorithms such as lightcuts.
We will first review bounding, how it is used in lightcuts, and how
we bound shaders before discussing how we leverage shader bound-
ing support to generate importance sampling.

3.1 Background

Instant radiosity-based [Keller 1997] formulations of rendering
convert all lighting into virtual point lights (VPLs). Each point is
then shaded by summing the contribution of all the VPLs. Using
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the notation of lightcuts, the radiance at a point x is:

Lr(x, ωeye) =
∑

i

MiGiViLi (1)

where, x is the point being shaded, i is the i-th VPL, the summation
is over all the VPLs, ωeye is the viewing direction, and the M, G,
V , and L terms are the material, geometry, visibility and intensity
terms between point x and VPL i.

Lightcuts [Walter et al. 2005] approximates this summation using
a hierarchical clustering of lights, called the light tree, to achieve
scalable rendering with many lights. The illumination at a point
(called a gather point) is accurately estimated by adaptively picking
a clustering, called a cut, from the light tree. The contribution from
each light cluster is estimated based on the evaluation of one of its
members, called the representative light. The algorithm starts with
an initial cut, such as the root of the light tree, and then refines it
until the error bound for each cluster is below a given threshold of
the total. The error bounds for each cluster LC are computed by
bounding the M and G terms individually (respectively called Mub

and Gub), and using the upper bound of one for visibility.

error(LC) ≤ MubGub
∑
i∈LC

Li (2)

Multidimensional lightcuts [Walter et al. 2006] (MDLC) extends to
summation over multiple gather points to support effects like anti-
aliasing, depth-of-field, and motion blur by summing over the con-
nections between the j-th gather point and the i-th light:

Lpixel =
∑

i j

S j MjiG jiV jiLi (3)

where, S is the strength of a gather point. It generalizes the no-
tion of a cut to apply to the cartesian product of a gather tree and a
light tree and adaptively picks a subset of all the gather-light inter-
actions to approximate the total shading in a pixel. The error bound
between a gather cluster XC and a light cluster LC is:

error(XC , LC) ≤ MubGub
∑
j∈XC

S j

∑
i∈LC

Li (4)

The original Lightcuts papers [Walter et al. 2005; Walter et al.
2006] provided bounding functions for a few standard material
models, but required implementors to hand-craft bounding func-
tions for any other material type they wanted to use. One goal of
this paper is to support the use of arbitrary procedurally defined
materials by automatically generating the corresponding bounding
functions, Mub. Similar techniques could be used to support light
shaders with their corresponding bounds, Gub, but for the rest of
this paper, we will focus on material or surface shaders.

3.2 Generalization of the shaders

Let us assume we are given a shader program (a surface shader
in the Renderman Interface nomenclature) that can compute the
shading for a given point and light direction and that we will call
s1(x, ω). The shading point x represents not only the spatial location
of that particular surface sample, but also all other associated pa-
rameters with that position such as the geometric normal and shad-
ing normal (e.g., for bump maps). For physically-based algorithms,
the shading function is equal to the cosine-weighted BRDF and is
the same as the Mi term in lightcuts:

s1(x, ωi) = fr(x, ωeye, ωi) cos(ωi) = Mi (5)

where ωi is the direction from x to light i.

s1(x, ω)

(a)

s2(x, LC)

(b)

s3(XC , LC)

(c)

Figure 2: The different types of shader bounding versions. The
standard shader s1 evaluates the interaction between a gather point
and a light. Shaders s2 and s3 bound the interaction between a
cluster of lights and a single gather point or a cluster of gather
points respectively.

To support one of our target physically-based rendering algorithms,
lightcuts, we need to augment this shader with two additional ver-
sions that compute bounds over ranges of inputs to the shader: from
a single point over a set of directions, and over both a set of posi-
tions and directions. The bounding shader versions are illustrated
in Figure 2.

The input shader can evaluate the contribution of a light to a point
x. We refer to this shader as s1 (Figure 2a). Further, we create two
new versions of the shader, s2(x, LC) and s3(XC , LC) (Figures 2b
and 2c) that can bound the contribution at point x or a cluster of
points XC from a cluster of lights LC respectively. Once we have
this interface we can compute Mub and evaluate Equations 2 and 4
to support programmable shaders with lightcuts.

There are many ways in which bounding functions can be created.
We chose to use interval arithmetic [Moore and Bierbaum 1979].
We note that we also tried linear [Moore and Bierbaum 1979] and
affine arithmetic [Comba and Stolfi 1993] for bounding, but we
found the relative gains of using these formulations (in terms of
tighter bounding functions) did not justify the much higher cost in
computation that they impose.

3.3 Generating importance functions

Another critical computation for rendering is importance sampling
which is necessary for reducing variance during Monte Carlo sam-
pling, for example in path tracing or photon tracing. But with pro-
grammable shaders one does not have an analytical representation
of the shader, and sampling must be done by treating the shader as a
black box using non-adaptive sampling. Standard cosine-weighted
hemispherical sampling can be used but is only ideal for diffuse
surfaces and becomes an increasingly poor importance sampling
function as materials become less lambertian. Thus, using pro-
grammable shading with algorithms like photon mapping or path
tracing can be highly inefficient for general materials.

We propose using our shader bounding functions to automatically
generate a good importance function for arbitrary shaders. Let the
set LS be the sphere of outgoing directions centered at the gather
point x, and {LS i }ni=1 a partition of LS . The maximum of s2(x, LS i )
defines a conservative estimate of the shader over the solid angle
Ωi subtended by the i-th partition element. Applying this bound-
ing over the hemisphere creates a piecewise constant upper bound
to the shader function that we then use for importance sampling.
Constructing this importance function is somewhat expensive but
for strongly directional shading functions it can greatly reduce the
variance in the directional sampling.

Discussion: Note that we also considered sampling the shader
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function to construct a shader estimate as an importance function.
But this approach is not robust, and can be quite problematic for
highly glossy materials unless an extremely large number of sam-
ples are used to compute the estimate. A poor importance function
increases, rather than decreases, variance. To avoid this problem
we chose to construct conservative bounds on the shader function
to drive importance sampling.

4 Shading Language and Compiler

Given a programmable shader function s1 our goal is to automat-
ically generate s2 and s3 to enable coupling the programmable
shader with global illumination algorithms.

Programmable shaders are commonly written in languages which
follow the imperative paradigm. The production artists who write
shaders would likely find it inconvenient to manually write multi-
ple versions of the same shader to support bounds and importance
sampling like in [Parker et al. 2007]. Instead, we only require the
user to write the s1 shader, and propose an automated compilation
technique to generate the s2 and s3 versions of s1 without manual
intervention.

4.1 Shading Language

Our shading language, inspired by Renderman surface shaders, pro-
vides a set of predefined variables related to a single gather point
being shaded and restricts the evaluation to a single light. In other
words, there is no illuminate loop – the renderer takes care of loop-
ing over light sources. These variables are:

• P - position,
• N - normal vector,
• L - light direction,
• I - ray incoming direction,
• S, T - texture coordinates.

The language has two main types: float and a 3D vector. We also
support Renderman-style keywords like surface, color and point,
which are just synonyms for vector. Note that the N, L and I input
variables are already normalized, unlike in Renderman. A simple
example shader in our language is:

// a simple diffuse shader
color diffuse(color Kd)
{

return Kd * max(dot(N, L), 0);
}

The types of expressions in this shader can be derived easily:

L : vector
N : vector
Kd : vector
dot(N, L) : float
max(dot(N, L), 0) : float
Kd * max(dot(N, L), 0) : vector

4.2 Lifting Shaders to Intervals

To produce s2 and s3 from s1, we “lift” the types of some prede-
fined input variables to intervals. This lifting will automatically
propagate through all other variables and function calls that depend
on the lifted inputs. The interval versions of the shaders will contain
two new types: interval and box (a 3D interval).

If the shader code is simply a sequence of variable assignments,
ending in a return statement, this is straightforward to do. Lifting
to s2 is achieved by replacing the type of L, the light direction, from
vector to box. As an example, lifting our simple diffuse shader will

result in the following new expression types, which can be automat-
ically derived by structural recursion on the program:

L : box
N : vector
Kd : vector
dot_vb(N, L) : interval
max_is(dot_vb(N, L), 0) : interval
mul_vi(Kd, max_is(dot_vb(N, L), 0)) : box

Note that we also replaced the dot and max functions and the * opera-
tor by their lifted versions, denoting the argument types by a string
following the function name. The letters s, i, v, and b stand for
scalar, interval, vector, and box, respectively. The generated shader
will thus look like:

box diffuse(vector Kd)
{

return mul_vi(Kd, max_is(dot_vb(N, L), 0));
}

Generating the s3 shader is analogous, with the difference that all
predefined inputs are lifted, rather than just the light direction L.

4.3 Lifting if-then-else branches

In the discussion above, we assumed that the shader code is simply
a sequence of assignments. However, if-then-else branches are a
very common tool in procedural shaders. For example, movie stu-
dios often use übershaders that support a large number of features,
each of which can be turned on or off. A typical übershader might
be structured as

if (condition1)
{

// compute feature 1
}
if (condition2)
{

// compute feature 2
} else {

// compute simple approximation to feature 2
}
...

The key problem in intervalizing if-then-else branches is that a con-
dition containing interval variables can be both true and false, so
executing both branches is sometimes necessary. However, the
two branches might make completely different (and conflicting)
changes to the program state. The work of [Heidrich et al. 1998]
translates if-statements to three-way branches, and briefly notes that
some variables will have to be renamed; however, this becomes
non-trivial for complex nested branching and multiply-assigned
variables. We instead propose a more general approach based on a
standard compiler technique called static single assignment (SSA)
form. SSA is an intermediate code representation in which every
variable is assigned exactly once. We handle if-then-else constructs
by executing both branches, and then merging variables that corre-
spond to the same variable in the original code. For example, the
code

y = z = 0;
if ( x > 0 ) y = 1;
else z = 1;

will be translated to

y1 = 0;
z1 = 0;
y2 = 1;
z2 = 1;
y3 = phi(greater(x, 0), y2, y1);
z3 = phi(greater(x, 0), z1, z2);
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Here greater is an intervalized comparison function that returns a
tri-state boolean (can be true, false, or both), and phi is a merging
function that returns either its second argument, its third argument,
or the interval union of them, depending on whether the comparison
result is true, false, or both respectively. This approach scales to
an arbitrary number of arbitrarily nested branches. Note that unlike
standard SSA usage where the phi functions are typically eliminated
at a later compilation stage, our phi functions must be kept and
translated into runtime code for performing interval union.

We currently support iteration using loop unrolling for a finite num-
ber of iterations and use the approach for conditionals explained
above. We leave support for more general looping for future work.

5 Importance Sampling and Bounding

We now show how our interval-based shaders can be used to pro-
vide the functionality needed by physically-based renderers: im-
portance sampling and bounding.

5.1 Importance Function Generation

The goal of importance sampling is to generate samples whose
probability density is proportional to the function values at those
points. For simple functions, an exact importance sampling can be
achieved by computing the cumulative distribution function and in-
verting it. However for arbitrary functions this is not possible, and
we will have to use an approximate importance sampling.

An importance sampling function for s(x, ω) returns a direction ω
and the probability density, p(ω) of choosing it. We want to mini-
mize the value s(x, ω)/p(ω) over allω. Our approach is to construct
an adaptive piecewise-constant function g(ω) that is an upper bound
on the target function s. Using a piecewise-constant g makes it easy
to importance sample g exactly and using an upper bound makes it
easy to bound the worst case using:

s(x, ω)

p(ω)
=

s(x, ω)

g(ω)/
∫

g(ω)dω
≤
∫

g(ω)dω (6)

Thus we can generate a good importance sampling by minimiz-
ing the volume of g. Moreover knowing the volume of g provides
guarantees about the quality of the importance sampling in terms of
maximum values and variance.

We characterize g by representing the sphere of directions using a
cube-map decomposition and constructing an adaptive quad-tree on
each face. We use the interval bounding shader s2 to compute an up-
per bound on s over all the directions corresponding to a quad-tree
cell. We iteratively refine the quad-tree cell with the largest volume
(value times solid angle) until some termination criteria is met (cur-
rently we use a fixed total number of refinement steps). Note that g
is piecewise constant in cube area, rather than solid angle, requiring
a small correction factor when computing the probabilities. When
sampling from g we use a discrete probability to pick the quad-tree
cell and then a uniform distribution within the cell.

Lightcuts using the shader functions. Once we have the shading
function s1 and the bounding functions s2 and s3, it is simple to
use them in a lightcuts framework. When evaluating representative
pairs (gather and light points) for a cluster we use:

Mi = s1(xi, ω) (7)

For the upper bound Mub
C we use either the upper bound given by s2

or s3 depending on whether the gather cluster consists of a single
point or multiple points. If the gather cluster XC is a single point xi
then we use:

Mub
C = s2(xi,ΩC) (8)

otherwise we use:
Mub

C = s3(XC ,ΩC) (9)

where ΩC is an interval vector containing all possible directions
from points in the gather cluster XC to points in the light cluster LC .

5.2 Texture support

In our system, a shader queries a texture using its normalized coor-
dinates (s, t) ∈ [0, 1] × [0, 1]. During the lifting process these coor-
dinates may turn into an interval box. Naı̈vely checking all pixels
within a region to find the exact maximum and minimum, could be
prohibitively expensive. Instead we use the same fast but conserva-
tive, mipmap-inspired solution as [Moule and McCool 2002; Has-
selgren and Akenine-Möller 2007]. As with a mipmap, we precom-
pute and store lower resolution versions of the texture, except that
these store the minimum and maximum texture values instead of
averages. During lookup we select an appropriate resolution level
and query a constant number of its texels that completely cover the
desired region. Repeating textures are handled by breaking the in-
terval box at the texture borders into at most four regions.

5.3 Noise

Procedural shaders often use continuous noise functions to model
the appearance of surfaces in lieu of finite resolution textures [Apo-
daca and Gritz 1999]. We used a table-driven noise implementa-
tion based on the open source program Pixie [2008] which returns
values between zero and one. Noise functions are typically high
frequency and complex making them hard to bound tightly using
standard interval techniques. Thus we follow the same approach as
[Heidrich et al. 1998] and only try to compute tight bounds for very
small input intervals, otherwise we fallback to the default interval
bound of [0, 1] for the noise function.

6 Results

We now demonstrate our system using different scenes to highlight
various features of our system. Our prototype system is mostly
unoptimized and it is written in Java, except for the ray intersection
code implemented in C++, and the compiler written in Haskell.
All reported timings correspond to a dual quad-core Xeon E5440
2.83 GHz system with 16GB of RAM using Sun’s Java 1.6.0-11.

6.1 Scenes and Shaders

We evaluate our system on a wide range of scenes, emphasizing
geometric complexity, shading complexity and lighting complexity.

Our first set of scenes are from open source movies Big Buck
Bunny [Blender Foundation 2008] and Elephants Dream [Blender
Foundation 2006]. We picked these scenes to illustrate a couple
of issues. One, our robust handling of high geometric and shading
complexity. Two, in the original scenes, several fill lights are used
to light each character to effectively fake the absent indirect illu-
mination. We eliminated those lights (though they can be trivially
added if desired), and instead show how indirect illumination can
be automatically added to the scenes using our system.

Big Buck Bunny. Figure 7 shows a film shot from the open source
movie Big Buck Bunny. The scene is lit by the Eucalyptus Grove
environment map and a sun model. The characters have very high
complexity because they have tesselated hairs that are shaded using
a general shader: the Kajiya-Kay hair model. The other materials
are defined through an übershader which implements several BRDF
models and combines them differently for each character. We note
that our code which is not memory optimized could not handle all
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the hair from the original model, so we limited ourselves to 140k
hairs for the whole model (we address this issue in the Chinchilla
model).

Chinchilla. Chinchilla is a single character from Big Buck Bunny.
Since it is a single character, we were able to support the full export
of all the hairs in the model. We show this scene to demonstrate
that we can handle this complexity.

Elephants Dream. The room in Figure 8, taken from the epony-
mous movie, has 928k polygons, and uses the übershader. The only
light sources are the two fluorescent lamps; we treat each as an area
light source.

Our second set of scenes illustrates our ability to handle complex,
highly anisotropic BRDFs, and very complex shaders. These spe-
cific shaders are from [Wang et al. 2008] and include captured
spatially varying anisotropic reflectance data with rich details.

Pillow. The silk brocade pillow in Figure 4 uses the measured
BRDF data from [Wang et al. 2008]. The highly anisotropic shader
reads compressed data stored as textures and reconstructs the mea-
sured reflectance data using PCA. Eighty-three textures are used.

Plate. The plate in Figure 9 has a shader that implements a highly
directional, spatially varying BRDF from [Wang et al. 2008]. The
plate stands on a glossy ground plane with a shader generated nor-
mal map. The scene is lit by the Kitchen environment map.

Our next scene shows our ability to handle several common primi-
tives used in programmable shaders: the noise function and normal
mapping.

Shiny Marble in Cornell Box. The sphere, lateral walls and floor
of this scene (shown in Figure 5) are defined by procedural shaders.
The right wall shader is highly glossy and modifies its shading nor-
mal. The sphere modulates its material from an almost mirror-like
surface to diffuse veins using a noise function.

Our last scene is included to compare our results against manually
generated bounding functions for shaders.

Tableau. This scene in Figure 6 is taken from [Walter et al. 2006]
and shows depth-of-field effects with a range of analytical BRDFs
including Phong and Ward. We use this scene to compare against
the manually generated bounding functions used in lightcuts.

6.2 Results for Multidimensional Lightcuts

We evaluated the following scenes using multidimensional light-
cuts: tableau, big buck bunny, chinchilla, elephants dream, and pil-
low. Table 1 summarizes the data for these scenes.

To evaluate the performance of our interval shaders we use two
main metrics: the average cut size and the total rendering time.
Cut size corresponds to the number of representative gather—light
pair evaluations needed to compute each pixel. Smaller cut sizes
are more efficient and indicate that the interval shaders are being
effective at computing bounds that are not overly conservative. We
did not place an upper bound on the cut size, so the algorithm runs
until it meets the algorithm’s stopping criterion.

Tableau. First, we consider the Tableau scene (Figure 6) to eval-
uate how our automatic interval-derived bounds compare against
the hand-crafted bounding functions from lightcuts. This scene in-
cludes depth-of-field and is challenging because the gather points
are not spatially coherent, causing the s3 shader to produce looser
bounds. Even so, both cut sizes and rendering times are only about
a factor 2.7× larger than for the original scene. We expected a per-
formance penalty relative to manually crafted bounds and deem this
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Figure 3: A chinchilla with over 11 million triangles. The hair
uses the Kajiya-Kay shader and needs only a small fraction (less
than 0.07%) of all the possible gather-light pairs.
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Figure 4: A pillow with spatially varying anisotropic reflectance
rendered with multidimensional lightcuts.

to be reasonable given the automatic functionality provided by the
interval shaders.

Übershaders in complex scenes. The scenes in Figures 3, 7 and 8
use übershaders. For all these scenes our interval shaders let us add
indirect illumination and thus eliminate the need for fill lights to
fake global illumination. Average cutsizes stay reasonable, ranging
on average from 700 to 1,200 gather–light pair interactions com-
puted per pixel (0.02% to 0.07% of all possible pair interactions).

Big Buck Bunny and Chinchilla are particularly complex scenes
(10+ million polygons) and demonstrate how lightcuts amortizes
the cost of rendering highly detailed geometry which is otherwise
notoriously prone to aliasing artifacts under complicated lighting.

Measured BRDF. Using programmable shaders and our techniques
automatically handles novel material models for which no simple
parameterized formula or sampling strategy is known. Figure 4
shows a pillow with a measured BRDF stored in a complex com-
pressed format and includes the indirect illumination it casts onto
the surrounding box. Average cutsize is less than 1,000.

6.3 Importance Sampling

Our interval-based shaders enable importance sampling of the pro-
grammable shaders. However, our interval shaders incur an addi-
tional cost to build the importance function using several shader
evaluations as described in Section 5. We now demonstrate how
effective importance sampling is (despite its cost) in a couple of
scenes: the shiny marble, and the plate scenes.

Shiny Marble. We render this scene using photon mapping and
generate the photons in two ways: using cosine-weighted uniform
hemispherical sampling, and using importance sampling derived
from our interval-based shaders. Using roughly the same computa-
tion time we can generate a higher quality result with less variance

6
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Triangles Eye rays Direct Indirect Cut Size VPL Render Total Speed-up

Tableau (reference) 630 843 256 5 000 50 000 850.1 0.5 s 174.5 s 175.8 s 1 475 x

Tableau (shaders) 630 843 256 5 000 50 000 2 376.6 20.3 s 438.9 s 459.2 s 601 x

Big Buck Bunny 10 218 262 32 5 000 50 000 1 087.7 167.7 s 480.6 s 647.6 s 311 x

Chinchilla 11 020 943 32 5 000 50 000 1 223.1 168.8 s 347.5 s 516.3 s 282 x

Elephants Dream 928 557 32 37 753 50 000 759.6 85.7 s 378.3 s 464.0 s 834 x

Pillow 41 000 4 200 50 000 967.7 75.8 s 2 336.6 s 2 412.5 s 8 x

Table 1: Results for the multidimensional lightcuts scenes. The statistics show: number of triangles, number of rays per pixel, direct lights,
number of indirect VPLs. The results are: average cut size, time to generate VPLs, time to render, total time to render image. The last column
shows the speed-up compared to a brute force rendering which uses all gather-light pairs without the bounding overhead.

(Figures 5a and 5b). The benefits of the improved sampling lead
to faster convergence using fewer samples, compensating for the
cost of building the importance function. Even with more rendering
time cosine-weighted sampling alone cannot match the importance
sampling quality (Figure 5c).

Plate. This scene is also rendered with photon mapping using both
cosine-weighted uniform sampling and our shader-derived impor-
tance sampling. Similar to the shiny marble scene, equal-time and
equal-quality comparisons are shown in Figure 9.

Note that in scenes with diffuse-only shaders the cost of generat-
ing the importance function might not be worthwhile, since cosine-
weighted uniform sampling (our default) is the best one could do.
Knowledge from a modeler indicating if shaders are mostly diffuse
could be useful. In our system we assumed that shaders are arbi-
trary, and so we conservatively incur the cost of importance sam-
pling for all shaders.

7 Conclusions

This paper takes a first step towards automatically combining the
disparate worlds of programmable shading and physically-based
global illumination algorithms. Our compiler automatically gen-
erates interval versions of a programmable shader that compute
bounds on shading values over sets of directions or sets of spatial
and directional parameters. These bounding functions are then used
to automatically generate low variance importance sampling func-
tions even for highly directional procedural shaders. These addi-
tional type of queries on procedural shaders, sampling and bounds,
then enable the use of efficient, robust global illumination render-
ing algorithms, such as multidimensional lightcuts and photon map-
ping, for models with procedural shaders.

We have demonstrated our system over a wide range of scenes in-
cluding complexity in geometry, shaders, and illumination. We
show that our automatically generated sampling and bounding,
though not as fast as manually tuned versions, can be more effi-
cient than existing techniques such as cosine-weighted sampling
for arbitrary shading code.

Limitations and Future Work. Our sampling and interval bound-
ing could be improved in many ways. Creating good importance
functions currently is expensive and requires many subdivisions
largely due to looseness in the interval bounds, and our simplis-
tic refinement heuristic which does not always accurately reflect
cost/benefit of refining importance regions.

The shading language is currently somewhat limited and does not
support pruning of conditionals, arbitrary looping, or partial eval-
uation. Use of higher level type information such as unit vectors
could be used to produce tighter bounds. Optimizing performance
of the interval shaders and opportunities to create tighter bounds by
specializing commonly used graphics operations must also be in-
vestigated. Automatic use of SIMD operations could significantly

speed up some computations. We would also like to add support for
other types of shaders such as light shaders.
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(a) Rendered image (b) Interval shaders
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(c) Analytic materials

Figure 6: Tableau scene with high depth-of-field rendered with multidimensional lightcuts. The cut sizes are comparable in most of the scene,
but are higher on the glossy regions (as expected). Performance remains competitive.
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Figure 7: A frame from the movie Big Buck Bunny rendered with multidimensional lightcuts (left), and associated cut size image (right).
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Figure 8: A frame from the movie Elephants Dream rendered with multidimensional lightcuts (left), and associated cut size image (right).

(a) Cosine-weighted sampling (11 020.6 s) (b) Importance sampling (10 836.7 s) (c) Cosine-weighted sampling (19 670.6 s)

Figure 9: A plate with spatially varying anisotropic BRDF standing on a glossy surface with a shader-generated normal map, rendered using
photon mapping with different sampling configurations. (a) and (b) show equal time comparisons, while (c) requires more time but still does
not achieve the quality of (b).

9



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


