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Figure 1: We introduce a new approach utilizing high-order similarity relations, which can be used to accelerate Monte Carlo rendering of
translucent materials. (a) Reference path-traced rendering of a Corinthian capital made of a translucent material with a complicated phase
function. (b) Image rendered with the same algorithm but using a reduced scattering coefficient and an isotropic phase function: although a
3.6X speedup is obtained, the resulting accuracy is poor (see the included relative error visualization with the color mapping shown above the
renderings). (c) Image rendered using the same reduced scattering coefficient as (b) and a phase function provided by our method: with a
slightly higher speedup, significantly better accuracy is obtained. (d) Plots of the phase functions used in (a, b, c). Our theory permits finding
a tabulated function (the orange curve) accurately reproducing the reference appearance.

Abstract

Radiative transfer equations (RTEs) with different scattering pa-
rameters can lead to identical solution radiance fields. Similarity
theory studies this effect by introducing a hierarchy of equiva-
lence relations called “similarity relations”. Unfortunately, given
a set of scattering parameters, it remains unclear how to find
altered ones satisfying these relations, significantly limiting the
theory’s practical value. This paper presents a complete expo-
sition of similarity theory, which provides fundamental insights
into the structure of the RTE’s parameter space. To utilize the the-
ory in its general high-order form, we introduce a new approach
to solve for the altered parameters including the absorption and
scattering coefficients as well as a fully tabulated phase function.
We demonstrate the practical utility of our work using two ap-
plications: forward and inverse rendering of translucent media.
Forward rendering is our main application, and we develop an al-
gorithm exploiting similarity relations to offer “free” speedups for
Monte Carlo rendering of optically dense and forward-scattering
materials. For inverse rendering, we propose a proof-of-concept
approach which warps the parameter space and greatly improves
the efficiency of gradient descent algorithms. We believe similar-
ity theory is important for simulating and acquiring volume-based
appearance, and our approach has the potential to benefit a wide
range of future applications in this area.
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1 Introduction

Many real-world materials including marble, jade, and human
skin exhibit distinctive appearances arising from subsurface scat-
tering of light. Understanding, simulating, and measuring this
phenomenon has been an active research area in computer graph-
ics for decades.

The physics of subsurface scattering is normally modeled with the
radiative transfer framework [Chandrasekhar 1960]. The core
of this framework is the radiative transfer equation (RTE) which
governs how frequently light scatters and how it gets redirected
or absorbed (when scattering occurs) via a set of scattering pa-
rameters.

The parameter space of the RTE contains infinitely many equiv-
alence classes such that different parameters in each class lead
to identical solution radiance fields, under the assumption that
these radiance fields have bounded angular frequencies. Similar-
ity theory, introduced to applied physics by Wyman et al. [1989a],
studies this property by deriving a hierarchy of equivalence re-
lations called “similarity relations”. Higher-order similarity rela-
tions offer finer partitions of the space, and parameters in the
resulting equivalence classes can produce identical radiance with
higher frequencies.

Previously, only a special case of the simplest order-1 similarity re-
lation has been used in computer graphics. Furthermore, given a
set of scattering parameters, computing an altered set adhering to
(higher-order) similarity relations remains a challenge, especially
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for the altered phase function which is not uniquely determined
by the relations.

In this paper, we present a complete exposition of similarity the-
ory and introduce practical algorithms to utilize this theory in
its general higher-order forms. Our theoretical contributions in-
clude:

• Introducing to graphics the full derivation of similarity rela-
tions (Section 4.1) and discussing their connection to diffu-
sion theory (Section 4.2).

• Developing novel algorithms to determine the existence
of and to solve for the parameters (including absorp-
tion/scattering coefficients and a tabulated phase function)
satisfying similarity relation of any given order (Section 5).

Our theory can lead to practical applications in forward and in-
verse rendering of translucent media. The presence of equiva-
lence classes is a significant challenge in inverse rendering. This
is because different parameters can provide very similar appear-
ances, causing the optimization problem to be ill-conditioned.
Section 6 introduces a proof-of-concept method reparameteriz-
ing the search space, so that gradient descent algorithms become
much more effective in the new space.

Forward rendering is our main application (Section 7). We de-
velop a simple procedure that takes a set of scattering parameters
and outputs an altered set in a few seconds. Replacing the origi-
nal parameters with the altered ones can accelerate Monte Carlo
rendering of optically dense and forward-scattering media (over
3X speedups can be achieved for volume path tracing). A key ben-
efit offered by our method is that no changes need to be made to
core rendering algorithms: only material scattering parameters,
which are inputs to the renderer, are modified.

2 Related Work

Because of the breadth of research on modeling, rendering, and
measuring subsurface scattering, a complete survey is beyond
the scope of this paper. In this section, we quickly review prior
work in five categories: radiative transfer, Monte Carlo methods,
diffusion methods, similarity theory, and inverse rendering.

Radiative Transfer. Radiative transfer is used in many areas in-
cluding astrophysics, neutron transport, and computer graphics
[Chandrasekhar 1960; Ishimaru 1978]. Recently, Jakob et al.
[2010] introduced a generalized framework to better handle scat-
tering media with oriented structures, such as volumetric fabrics.
In this paper, we focus on the classical form of the RTE.

Monte Carlo Methods. Monte Carlo methods solve the full RTE
directly. Volumetric path tracing and its variations [Kajiya and
Von Herzen 1984; Lafortune and Willems 1996; Pauly et al. 2000]
provide unbiased estimators for the solution radiance by ran-
domly constructing light paths and evaluating their contributions.
In addition, various techniques such as volumetric photon map-
ping [Hachisuka et al. 2012] and many-lights methods [Dachs-
bacher et al. 2014] have been developed, which offer faster con-
vergence than path tracing methods but often at the cost of intro-
ducing bias in the results.

Diffusion Methods. Diffusion methods replace the RTE with the
diffusion equation (DE) by applying a first-order approximation
to directional radiance [Ishimaru 1978]. Many approaches have
been proposed to solve the DE including approximated analytical
solutions [Jensen et al. 2001; D’Eon and Irving 2011] and finite
element (or finite difference) based methods [Stam 1995; Wang
et al. 2008; Arbree et al. 2011]. The diffusion approximation
requires the resulting radiance field to be smooth, which is usually

violated near material boundaries and in optically thin regions.
Consequently, hybrid methods [Li et al. 2005; Donner and Jensen
2007; Habel et al. 2013] combine Monte Carlo methods and
diffusion for better accuracy.

Similarity Theory. Similarity theory was introduced by Wyman
et al. [1989a; 1989b] in applied physics. The authors derived a
set of relations between two sets of scattering parameters so that
the resulting RTEs have identical solution radiance fields when
their directional frequencies are bounded. A highly simplified
order-1 form of this theory is used extensively in diffusion meth-
ods and has been applied for accelerating Monte Carlo simulation
of light transport [Chatigny et al. 1999; Frisvad et al. 2007]. How-
ever, very limited work has been done, in both computer graphics
and applied physics, to utilize such relations at higher orders.

Inverse Rendering. Inverse rendering methods solve for the ma-
terial properties in a scene given the desired appearance and have
many applications in appearance acquisition. Multiple methods
have been developed to recover subsurface scattering proper-
ties [Wang et al. 2008; Dobashi et al. 2012; Papas et al. 2013;
Gkioulekas et al. 2013b]. We show in this paper that similarity
theory can be helpful for solving the inverse volume rendering
problem.

3 Overview

In this section, we first briefly revisit the basic concept of radia-
tive transfer and present a mathematical description of similarity
theory. Then, we describe the computational challenges for for-
ward and inverse rendering of translucent media and our plan to
tackle these challenges.

Radiative Transfer. The radiative transfer equation (RTE)
[Chandrasekhar 1960], in the form usually used in graphics, is

(ω · ∇)L(ω) = −σt L(ω) +σs

∫

S2
f (ω′ ·ω)L(ω′)dω′ +Q(ω)

where the spatial dependencies are dropped for notational conve-
nience. This equation describes that the directional derivative of
the radiance field L is determined by its value via the attenuation
coefficient σt , an integral of L at the same location via the scatter-
ing coefficient σs and the phase function f (·), and the source term
Q. In addition, σt = σa +σs where σa is called the absorption
coefficient. For participating media with no internal source, Q
vanishes, yielding

(ω · ∇)L(ω) = −σt L(ω) +σs

∫

S2
f (ω′ ·ω)L(ω′)dω′. (1)

Note that the phase function f (·) is assumed to be a 1D function
of (ω ·ω′). Generalizing f (·) to a full 4D function (of ω and ω′)
is possible [Jakob et al. 2010] but beyond the scope of this paper.

Similarity Theory. Theoretically, assuming the solution radi-
ance L in the RTE (1) is band-limited (in the spherical harmonics,
or SH, domain), there exist altered parameters σ∗t , σ

∗
s , and f ∗(·),

such that the corresponding altered RTE

(ω · ∇)L(ω) = −σ∗t L(ω) +σ∗s

∫

S2
f ∗(ω′ ·ω)L(ω′)dω′ (2)

has a solution which equals that of (1) exactly. Similarity the-
ory [Wyman et al. 1989a] describes the relations between the
altered parameters and the original ones, which are presented in
Section 4. Based on these relations, the parameter space can be
partitioned into multiple equivalence classes. In practice, when
the assumption does not hold perfectly, parameters in one equiv-
alence class produce approximately identical appearances.
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Figure 2: Our pipeline to speedup forward rendering of translucent
media. It takes the original scattering parameters as well as a user-
specified α ∈ (0,1) and outputs the altered parameters.

Inverse Rendering: Challenges. Given the complicated and
highly non-linear relation between the scattering parameters and
the resulting appearance, inverse rendering is usually modeled as
an optimization problem where the parameter space needs to be
explored locally [Wang et al. 2008; Hašan et al. 2010; Dobashi
et al. 2012; Gkioulekas et al. 2013b]. This process, however,
can be extremely expensive as the search space is often high-
dimensional, and exploring it requires iteratively solving the for-
ward problem, which is challenging by itself. The presence of the
equivalence classes makes the inverse problem even more diffi-
cult as it creates ambiguities between different sets of parameters
which can cause the optimization to be ill-conditioned.

Inverse Rendering: Our Approach. Similarity theory suggests
the locations in the parameter space where the ambiguities occur.
Section 4.3 illustrates such an example using a simple 2D space.
Based on this understanding, we introduce a proof-of-concept
method (Section 6) which warps the space in a non-linear manner
so that it becomes much easier for gradient based methods to find
good solutions.

Forward Rendering: Challenges. Forward rendering of translu-
cent materials is our main application. It requires solving (1)
which in general has no closed-form solution, and accurate nu-
merical solutions often involve Monte Carlo simulations. To ren-
der a normal sized object made of optically dense materials, such
as milk and marble, hundreds or thousands of subsurface scatter-
ings need to be simulated on each light path, yielding slow per-
formance. Among such materials, the highly forward-scattering
ones are particularly difficult to handle. They include phase func-
tions that send light into very concentrated regions, causing path
tracing based algorithms to produce high noise, and photon map-
ping or many-lights methods to require a massive number of pho-
tons or virtual lights to avoid intense artifacts or energy loss.

Forward Rendering: Our Approach. We tackle the challenge of
rendering optically dense and forward-scattering materials using
similarity theory. Particularly, we look for equivalent parame-
ters σ∗t , σ

∗
s , f ∗(·) with σ∗t < σt because a smaller attenuation

coefficient means fewer scattering events to simulate and less
computation required. The most basic version of this idea, which
reduces σs and sets f ∗(·) to isotropic, has been used in graphics
but can result in poor accuracy (Section 4.2).

Figure 2 previews the pipeline of our method. The user pro-
vides the original scattering parameters σt , σs, f (·) as well as
an extra parameter α ∈ (0,1) controling the tradeoff between
performance and accuracy. The first component of our pipeline
computes the altered absorption and scattering coefficients based
on similarity theory (Section 4.1). The altered phase function
f ∗(·), however, is not directly given. Instead, similarity theory
specifies the desired Legendre moments f ∗1 , f ∗2 , . . . of f ∗(·). The
second component of the pipeline then numerically solves for
f ∗(·) as a tabulated function given those moments (Section 5).

Our approach is easy to implement (pseudocode is in Section 7.1
and our MATLAB implementation is available as supplementary
material) and straight-forward to use: the user can simply replace
the original scattering parameters with the altered ones (which
are the outputs of our pipeline). The base rendering method does
not need to be changed. Thorough experimental evaluations of
our method are in Section 8.

4 Similarity Theory

Similarity theory was originally introduced to applied physics
by Wyman et al. [1989a; 1989b]. It studies the equivalence
classes of the RTE’s parameter space by introducing a hierarchy
of equivalence relations called similarity relations.

Note that, given the original scattering parameters, the similarity
relations do not directly provide the values of all altered parame-
ters, and computing these values (the altered phase function in
particular) is non-trivial. We introduce a novel approach to solve
for these parameters in Section 5.

In this section, we first present the full derivation of simialrity
relations (Section 4.1) following the original version proposed
by Wyman et al. [1989a]. Then, Section 4.2 discusses the con-
nection between similarity theory and approaches based on first-
order approximations of the RTE (such as diffusion methods).
Finally, Section 4.3 shows an example of capturing the structure
of a simple RTE’s parameter space using the derived relations.

4.1 Derivation of Similarity Relations

We present the derivation (following [Wyman et al. 1989a]) of a
set of relations between the original parameters σa, σs, f (·) and
the altered ones σ∗a, σ∗s , f ∗(·) such that the original RTE (1) and
its altered version (2) have identical solution radiance L, based
on the assumption that L has bounded directional frequency. The
resulting relations are in (18).

Rearranging the terms in the original RTE (1) yields

(ω · ∇)L(ω) + I(ω) = 0 (3)

where

I(ω) := σt L(ω)−σs

∫

S2
f (ω′ ·ω)L(ω′)dω′.

Similarly, the altered RTE (2) can be rewritten as

(ω · ∇)L(ω) + I∗(ω) = 0. (4)

Then having one solution L satisfying both (3) and (4) implies
that for all ω ∈ S2,

I(ω) = I∗(ω). (5)

To derive the similarity relations from (5), one can represent I(ω)
and I∗(ω) in SH and equate the corresponding SH coefficients.
To write I(ω) in SH, the radiance field L and the phase function
f (·) need to be expanded, yielding

L(ω) =
∞
∑

n=0

n
∑

m=−n

amnY m
n (ω), (6)

f (ω′ ·ω) =
∞
∑

n=0

2n+ 1
4π

fnPn(ω
′ ·ω)

=
∞
∑

n=0

n
∑

m=−n

fnY m
n (ω)Ȳ

m
n (ω

′)

(7)
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where Y m
n is the SH basis function, Pn is the Legendre polynomial

of degree n,

fn = 2π

∫ 1

−1

f (t)Pn(t)dt (8)

is the n-th Legendre moment of f (·), and the bar superscript de-
notes complex conjugation. The second equality in (7) follows
the Addition Theorem [Arfken et al. 1985]. For heterogeneous
materials, both amn and fn have spatial dependencies.

Given (6) and (7), it has been shown (see Appendix A) that

I(ω) =
∞
∑

n=0

n
∑

m=−n

amnσt r,nY m
n (ω), (9)

I∗(ω) =
∞
∑

n=0

n
∑

m=−n

amnσ
∗
t r,nY m

n (ω). (10)

where

σt r,n := σt −σs fn = σa +σs(1− fn),
σ∗t r,n := σ∗t −σ

∗
s f ∗n = σ∗a +σ

∗
s (1− f ∗n )

(11)

are called the reduced attenuation coefficients of order n. Note
that amn appears in both (9) and (10) since I(ω) and I∗(ω) are
assumed to share the same radiance field L.

From (9) and (10), the SH coefficients of I(ω) and I∗(ω) can
now be equated, which leads to amnσt r,n = amnσ

∗
t r,n for all n≥ 0

and −n≤ m≤ n. Namely,

amn(σt r,n −σ∗t r,n) =

amn[(σa −σ∗a) + (σs(1− fn)−σ∗s (1− f ∗n ))] = 0. (12)

Since (12) needs to hold for all n and m, consider a special case
where n= m= 0. It holds that

a00 =

∫

S2
Y 0

0 (ω)L(ω)dω=
φ

2
p
π

(13)

where φ :=
∫

S2 L(ω)dω is the fluence. Because f (ω′ ·ω) and
f ∗(ω′ ·ω), as functions of ω′, are probability densities over S2,
it holds that f0 = f ∗0 = 1. Then, (12) becomes φ

2
p
π
(σa −σ∗a) = 0.

Because φ is generally non-zero, this implies

σa = σ
∗
a. (14)

In general, for n≥ 1, given (14), (12) becomes

amn[σs(1− fn)−σ∗s (1− f ∗n )] = 0. (15)

To ensure that (15) holds for any L (namely for arbitrary amn),
we need to have

σs(1− fn) = σ
∗
s (1− f ∗n ). (16)

Similarity Relations. Wyman et al. [1989a] showed that the
only solution adhering to (14) and (16) for all n, m is the trivial
one: σ∗a = σa, σ∗s = σs, and f ∗(·) ≡ f (·). Thus, in general,
there is no “perfect” similarity relation. However, when L is band-
limited in SH domain, we have

amn = 0 for n> N , −n≤ m≤ n (17)

where N is a constant capturing the maximal angular frequency.
If N = 1, for example, L is called linearly anisotropic. When (17)

holds, (16) only needs to be enforced for 1≤ n≤ N , yielding the
similarity relation of order N :

σa = σ
∗
a,

σs(1− fn) = σ
∗
s (1− f ∗n ) for 1≤ n≤ N .

(18)

In practice, (17) may not hold everywhere inside the medium.
In this case, the altered RTE (2) will have a solution radiance
approximating that of the original (1).

The Legendre moment constraints in lower-order similarity rela-
tions are subsets of those in higher-order ones. Therefore, (18)
essentially provides a hierarchy of equivalence relations that parti-
tion the parameter space of a RTE with different granularity.

Spatial Dependency. Similarity relation (18) needs to be satis-
fied at every location x (which has been dropped for notational
convenience) within the material volume. Namely, for hetero-
geneous materials where σs, σa, and f (·) are spatially varying,
the altered parameters σ∗s , σ∗a, and f ∗(·) should also have spatial
dependencies so that (18) is satisfied independently for each x.

Generalized Forms. The similarity relations (18) force the ab-
sorption coefficient σa to remain unchanged. When σ∗a 6= σa, the
solution radiance L to the original (1) and the altered RTE (2)
are normally not identical. Wyman et al. [1989b] showed that
if one weakens the requirement of identical L and only asks for
equal resulting fluence φ =

∫

S2 L(ω)dω, generalizations of (18)
can be obtained. In particular, the generalized order-1 and order-2
similarity relations are respectively

σaσt r,1 = σ
∗
aσ
∗
t r,1,

σaσt r,1σt r,2

σs(1− f2)
=
σ∗aσ

∗
t r,1σ

∗
t r,2

σ∗s (1− f ∗2 )
. (19)

When σ∗a = σa, (19) reduces to (18) with N = 1 and N = 2.

Since most graphics applications care about radiance L (which
determines an object’s appearance) instead of fluenceφ, we focus
on the standard similarity relations (18) in the rest of this paper.
Please refer to Section 3 of the supplementary document for more
information on the generalized versions.

4.2 Discussion: Relation to First-Order Methods

In many prior works [Chatigny et al. 1999; Frisvad et al. 2007],
it was common to set

σ∗a = σa, σ∗s = σs(1− f1), f ∗(ω′ ·ω) = 1
4π . (20)

It is easy to verify that the altered phase function f ∗(·) has f ∗1 = 0.
Thus, σ∗s (1− f ∗1 ) = σ

∗
s = σs(1− f1), and (20) satisfies the order-1

similarity relation.

The altered parameters in (20) are also used by diffusion meth-
ods [Jensen et al. 2001; Arbree et al. 2011; D’Eon and Irving
2011] where σ∗s is called the reduced scattering coefficient. In fact,
the order-1 similarity relation and the diffusion approximation
share the same assumption that L is linearly anisotropic (namely
(17) holds with N = 1), so they offer similar levels of accuracy.
We present an alternative derivation of the diffusion equation
(DE) using this assumption in Section 2 of the supplementary
document.

On the other hand, methods based on first-order approximations,
including (20), have limited accuracy. These methods assume
that the radiance field is linearly anisotropic and can perform
poorly in optically thin or close-to-boundary regions where the
assumption is often violated. Furthermore, phase functions with
similar first moments can lead to dramatically different appear-
ances (examples are shown in Figures 1 and 9 as well as by

4
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Figure 3: Equivalence classes of a 2D parameter space. White dots
indicate the reference parameter points: (0.9,50) for the left plot
and (0.5, 25) for the right. Dashed lines contain all points belonging
to the same equivalence class (defined by the order-1 similarity
relation) as the references. Low-error regions on the error surfaces
(in false color) match the predicted equivalence classes, confirming
the theory.

Gkioulekas et al. [2013a]). Unfortunately, first-order methods
care only about the first moment of a phase function and can-
not capture all these varying appearances, as demonstrated in
Sections 8.2 and 8.3.

To our knowledge, there is no prior work in computer graphics which
considers higher-order similarity relations. In Section 5, we show
how to solve for the altered parameters satisfying the similarity
relation of any given order.

4.3 Example: Equivalence Classes

We now illustrate the structure of the parameter space of a simple
RTE and discuss how such structure can be exploited to benefit
forward and inverse rendering of volumetric media.

Consider a RTE with a fixed absorption coefficient and a Henyey-
Greenstein (HG) phase function [1941]. Then its parameter space
is 2D: one for the scattering coefficient σs and the other for the
HG parameter g. Because the first Legendre moment of an HG
function with parameter g is simply g itself, two parameter points
(g,σs) and (g ′,σ′s) belong to the same equivalence class defined
by the order-1 similarity relation1 if σs(1− g) = σ′s(1− g ′). Fig-
ure 3 shows the equivalence classes of two reference parameters
(0.9,50) and (0.5,25) plotted as dashed lines.

To validate the equivalence classes defined by similarity theory,
we created multiple renderings of a homogeneous, unit-sized
cube (under side lighting) using different scattering parameters.
Denote the image rendered with parameters g and σs as I(g,σs).
The insets in Figure 3 show images rendered with the reference
parameters. For each point (g,σs) in the space, define an error
function

d(g,σs) := ‖I(g,σs)− I0‖2 (21)

where I0 is the image rendered with the reference parameters.
The error surfaces defined by d are visualized as plot backgrounds.
We can see that the shapes of low-error regions match the curves
predicted by similarity theory well. Note that the error values
over the dashed lines are not exactly zero, since the equivalence
classes are defined based on the assumption that the radiance is
linearly anisotropic, which is normally not the case near bound-
aries.

Inverse Rendering. The presence of these low-error regions
causes inverse rendering to be very challenging. One reason is
that the shapes of these regions are not convex, so that many
optimization algorithms are not guaranteed to find a global opti-
mum. Furthermore, within the low-error regions, the gradient is

1 Similarity relations beyond order-1 are not useful for this parameter
space, as each equivalence class would contain only a single point.

fairly small and can be easily dominated by Monte Carlo or mea-
surement noise. Based on this understanding, Section 6 presents
a simple method that reparameterizes the search space, causing
gradient based methods to be much more effective.

Forward Rendering. We can exploit the structure of the param-
eter space to benefit forward rendering applications (Section 7).
To render an object with scattering parameters coming from the
upper-right region of Figure 3, for instance, we can instead use
a set of parameters in the same equivalence class but located at
the bottom-left of the space, as both sets of parameters lead to
approximately the same appearance. By picking a smaller scatter-
ing coefficient, the material’s optical density is reduced, causing
light to scatter less frequently. Consequently, fewer scattering
events need to be simulated, and speedups can be obtained.

5 Solving for Altered Parameters

Deriving the similarity relations (18) is only half the story. Appli-
cations such as forward rendering require full sets of parameters:
the values of σ∗a, σ∗s , and a complete phase function f ∗(·). Un-
fortunately, only σ∗a = σa is given directly by (18). The other
relations, σs(1− fn) = σ∗s (1− f ∗n ), are constraints.

To determine σ∗s , we consider the ratio between σ∗s and σs:

α := σ∗s /σs. (22)

In our forward rendering pipeline (Figure 2), this ratio is selected
by the user. Given α, we have σ∗s = ασs, and the only parameter
that remains unknown is the altered phase function f ∗(·). For
fixed order N , the Legendre moments of f ∗(·) need to satisfy

f ∗0 = 1, f ∗i = 1−
1− fi

α
for 1≤ i ≤ N . (23)

Unfortunately, computing f ∗(·) given f ∗0 , . . . , f ∗N is non-trivial. As
a phase function, f ∗(·) needs to be nonnegative. Discarding all mo-
ments higher than order-N by setting f ∗(t) =

∑N
n=0

2n+1
4π f ∗n Pn(t),

however, generally does not offer nonnegativity. In addition,
given the Legendre moment constraints, a nonnegative f ∗(·)may
not exist at all.

Wyman et al. [1989a] proposed a simple approach to provide
f ∗(·). This method does not allow N and α to be specified simul-
taneously. Instead, it takes N as the user input and constructs a
phase function f ∗(·) with f ∗N = 0. This method, therefore, offers
insufficient flexibility: in many applications including forward
rendering, we need to control both N and α to achieve good
performance and accuracy.

In this section, we introduce a general technique to find f ∗(·) for
any given N and α. Section 5.1 presents existence conditions
of f ∗(·) given f ∗0 , . . . , f ∗N . Section 5.2 introduces an algorithm to
solve for f ∗(·) numerically as a tabulated (piecewise-constant)
function.

5.1 Existence of the Altered Phase Function

We now show the sufficient and necessary conditions for the exis-
tence of a nonnegative function f ∗(·) with its Legendre moments
f ∗0 , . . . , f ∗N given.

For f ∗(·), its n-th monomial moment is γ∗n :=
∫ 1

−1
f (t)tn dt.

Since Pn(·) is a polynomial of degree n, the Legendre moments
f ∗0 , . . . , f ∗N and monomial moments γ∗0, . . . ,γ∗N of f ∗(·) uniquely
determine each other. Given these Legendre moments, the cor-
responding monomial moments can be computed by solving a
linear system (see Section 4 of the supplementary document for

5



Appears in the SIGGRAPH 2014 Proceedings.

details). It follows that determining whether f ∗(·) exists given its
Legendre moments f ∗0 , . . . , f ∗N is equivalent to checking its exis-
tence given the monomial moments γ∗0, . . . ,γ∗N . The latter is called
the truncated Hausdorff moment problem and has been studied in
probability theory [Curto and Fialkow 1991]. In fact, f ∗(·) exists
if and only if certain Hankel matrices formed using the monomial
moments are positive semi-definite. The following theorem pro-
vides a formal description of this result (see Theorems 4.1 and
4.3 in Curto and Fialkow’s work [1991] for the proof).

Theorem 1. Given γ∗0,γ∗1, . . . ,γ∗N with γ∗0 > 0. For each n, let Un,
Vn, and Wn be n× n Hankel matrices such that

Un(i, j) = γ∗i+ j−2, Vn(i, j) = γ∗i+ j−1, Wn(i, j) = γ∗i+ j (24)

for 1 ≤ i, j ≤ n. Then, a nonnegative function f ∗(·) with mono-
mial moments γ∗0,γ∗1, . . . ,γ∗N exists if and only if:

• (odd case) when N = 2k+ 1,

Uk+1 −Vk+1 ¼ 0, Uk+1 +Vk+1 ¼ 0 (25)

where “ ¼ 0” denotes positive semi-definiteness of a matrix;

• (even case) when N = 2k,

Uk+1 ¼ 0, Uk −Wk ¼ 0. (26)

Based on Theorem 1, a function IF EX I S T S() can be easily im-
plemented which takes the desired Legendre moments f ∗0 , . . . , f ∗N
and returns a Boolean indicating if f ∗(·) exists.

5.2 Computing the Altered Phase Function

Although Theorem 1 allows us to efficiently check the existence
of the altered phase function f ∗(·), it does not provide a practical
way to find one (if it exists). Next, we introduce an algorithm to
solve for f ∗(·) numerically. The resulting f ∗(·) can then be used
for physically-based rendering applications (Section 7).

We represent f ∗(·) as the linear combination of k basis functions
g1(·), . . . , gk(·):

f ∗(t) =
k
∑

i=1

ci gi(t). (27)

Note that this can lose generality as the bases may not be able to
represent all nonnegative functions on [−1,1]. The selection of
k is discussed in the end of this subsection.

Given (27) and (8), the n-th Legendre moment of f ∗(·) equals

f ∗n = 2π

∫ 1

−1

�

k
∑

i=1

ci gi(t)

�

Pn(t)dt =
k
∑

i=1

ci gi,n (28)

where

gi,n := 2π

∫ 1

−1

gi(t)Pn(t)dt

is the n-th Legendre moment of gi(·).

Let f∗ := ( f ∗0 f ∗1 . . . f ∗N )
T , c := (c1 c2 . . . ck)T , and

G :=









g1,0 g2,0 . . . gk,0
g1,1 g2,1 . . . gk,1

...
...

...
...

g1,N g2,N . . . gk,N









,

then (28) with n= 0, 1, . . . , N can be rewritten as

f∗ = Gc. (29)

To summarize, if g1(·), g2(·), . . . , gk(·), which determine G, are
given, we need to solve for c such that f ∗(·) is nonnegative and
the Legendre moment constraints (29) are satisfied.

In our implementation, we pick the boxcar basis functions:

gi(t) :=

�

1 −1+ 2i−2
k ≤ t < −1+ 2i

k

0 otherwise
, (30)

for i = 1,2, . . . , k. We choose this basis for its simplicity and
flexibility. Under (30), f ∗(·) becomes piecewise-constant, and its
value in the i-th piece simply equals ci . It follows that f ∗(·) is non-
negative if and only if c≥ 0 (defined component-wise). We then
would like to find a nonnegative k-dimensional vector c satisfy-
ing (29). This system, however, is normally under-constrained
since k, the number of pieces in f ∗(·), can be much greater than
(N + 1), the amount of Legendre moment constraints. Therefore,
we regularize the system by introducing a smoothness term Sc
with S ∈ R(k−2)×k being a 1D Poisson matrix

S=







−1 2 −1
−1 2 −1

. . .
−1 2 −1






.

This smoothness term captures the second derivative of f ∗(·), and
we would like ‖Sc‖2 to be minimized. We choose the 2-norm since
the solution c is robust to the choice of k, and the resulting phase
function f ∗(·) tends to send light into a wide range of directions,
which is a desirable feature.

Let Q := ST S, then ‖Sc‖2
2 = cT Qc, and we need to find the mini-

mizer to the following quadratic programming problem:

min
c
(cT Qc) subject to c≥ 0, Gc= f∗. (31)

Since Q is positive semi-definite, the global optimum can be found
in polynomial time [Kozlov et al. 1980]. We solve (31) using the
Gurobi Optimization Libraries [2013].

Selecting k. Given f∗, if the existence condition (25) or (26)
is violated, the quadratic programming problem in (31) is guar-
anteed to be infeasible. However, the converse is not necessar-
ily true: when (31) is infeasible, there could still exist some
f ∗(·) which cannot be represented using the k basis functions
g1(·), g2(·), . . . , gk(·). In this case, we need a larger set of bases.
One possibility to determine the value of k is to start with some
relatively small k0 and double it whenever (31) is infeasible, but
there should be a solution (according to Theorem 1). In practice,
however, we found that simply setting k = 360 is sufficient to
find the solutions in all our experiments.

6 Application: Inverse Rendering

In this section, we first describe an inverse rendering problem
which we believe is a good example to demonstrate the practical
usefulness of similarity theory. Then, we introduce a reparameter-
ized search space in which gradient descent algorithms converge
to a good solution much faster.

The Problem. Consider the problem of acquiring the material
parameters of a cube made of a scattering medium. Given a
photograph of the cube lit by an area light from the side (identical
to the setting used in Section 4.3), we assume that the cube has a
HG phase function and its absorption coefficient σa is given. The
goal is to find the scattering coefficient σs and HG parameter g.
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Figure 4: Search spaces for an inverse rendering problem: (a) the
original space; (b) the reparameterized space. The plotted region
in (a) maps to the area enclosed by the dashed lines in (b). Using
the original space, the stochastic gradient descent (SGD) algorithm
starting from point S is trapped at point P, which is far from the
real solution T. Using the reparameterized space, the algorithm is
able to find point R that is much closer to the real solution.

Our Solution. Given the highly complicated and non-linear re-
lation between the parameters and the resulting rendered image,
exact analytical solutions do not exist for this problem. Instead,
we use the error function d defined in (21) with I0 set to the input
image, and solve for g, σs such that the error is minimized. This
optimization problem can be solved using the stochastic gradient
descent (SGD) algorithm. The nondeterminism is caused by the
fact that the gradients need to be obtained through Monte Carlo
simulations and can be noisy.

Unfortunately, the use of a relatively low-frequency (soft) lighting
results in large regions where d(g,σs) is close to zero (as shown
in Figure 3), and the gradient values within these regions are very
small and can be dominated by Monte Carlo or measurement
noise. Consequently, after hitting this region, it becomes very
difficult for SGD to make further progress. Figure 4-a shows such
an example in which I0 is generated using parameters at point
T. If we choose point S as the initial guess and execute SGD,
the solution point moves to the low-error region (indicated in
purple) very quickly, but then gets “trapped” there. Figure 5-b
demonstrates that the solution (point P) found by this process
generalizes poorly to high-frequency (hard) lighting conditions.

To address this problem, we reparameterize the search space (Fig-
ure 4-b) by replacing the horizontal axis by the reduced scattering
coefficient σ′s := (1− g)σs. Under this reparameterization, both
axes have the same units, and the error surface becomes signif-
icantly more regular (Figure 4-b). To search for the solution in
the new space, we perform two one-dimensional SGDs. First, we
fix σs and look for σ′s that minimizes the error. Since each σ′s cor-
responds to an equivalence class given by the order-1 similarity
relation, this step allows us to select a class with minimal error.
Then, we search for the best parameter point within this class
by keeping σ′s fixed and performing another 1D search to find
the best σs. Figure 4-b shows an example starting from point S
(the same initial guess as in Figure 4-a) where the first 1D search
finds Q and the second returns R. Figure 5-c shows that this new
solution matches the ground truth better under both the original
(low-frequency) and the novel (high-frequency) lighting.

7 Application: Forward Rendering

Optically dense and forward-scattering materials are very com-
mon in the real-world [Frisvad et al. 2007; Gkioulekas et al.
2013b], but they are challenging to render. Our main application
is to offer speedups to Monte Carlo rendering of these materials
without modifying the core rendering algorithms. The basic idea
is to find altered parameters with σ∗s < σs (namely, with α < 1),
so that fewer scattering events need to be handled.
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(a) Reference (b) Original (c) Reparam.

Figure 5: Images rendered using the real solution (a) as well as
solutions found by executing SGD on the original search space (b)
and the reparameterized one (c). Visualizations of per-pixel relative
error (using the color mapping in Figure 1) are included in (b, c).
The images in the top row are used during the optimization process,
and those in the bottom with a novel lighting are for validation.
The solution found using the reparameterized space shown in (c)
leads to better results in both configurations.

We introduce a practical algorithm (Algorithm 1) based on the
theory introduced in Sections 4 and 5. To use this algorithm,
the user can simply input the original scattering parameters and
an extra number α which controls the balance between perfor-
mance and accuracy, and the algorithm outputs a set of altered pa-
rameters corresponding to an optically thinner and less forward-
scattering material. Rendering images using these altered param-
eters (without modifying the renderer) costs only a fraction of
the computation required to render with the original ones. If the
original parameters are spatially varying, the algorithm needs to
be performed at each spatial location (or for each homogeneous
region).

Next, we provide a detailed description of our technique: Sec-
tion 7.1 presents an overview of the method (whose pipeline has
been previewed in Figure 2); Section 7.2 describes the practical
aspects of the user-specified parameter α; Section 7.3 introduces
an “overfitting” problem and discusses how to avoid it. Detailed
experimental evaluations of our technique are in Section 8.

7.1 Overview

Given the original scattering parametersσa, σs, f (·) and the user-
specified parameter α, our method sets σ∗a = σa and σ∗s = ασs
(line 2 of Algorithm 1). Then, we determine the order N of the
similarity relation to satisfy. Greater N normally provides better
accuracy but may lead to unsatisfiable constraints. Thus, we use
the I FE X I S T S() routine implementing Theorem 1 (line 6) to find
the highest order N of which the similarity relation is satisfiable
(lines 4 to 10). In practice, we bound N with N0 = 5 (line 5)
because our experiments indicate that going beyond this order
does not provide observable improvement for resulting quality.

Occasionally, higher-order relations (greater N) yield worse ac-
curacy, and we call this problem “overfitting”. This is another
reason that we pick N0 = 5 as relations beyond this order tend
to overfit. Section 7.3 presents a simple method to reject the
overfitting results (line 14 of Algorithm 1).

Algorithm 1 contains the pseudocode of the entire pipeline. De-
spite the sophistication of the underlying theory, the algorithm
itself is very easy to implement. Our MATLAB implementation is
available as supplementary material.

7
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Algorithm 1 Computing the altered scattering parameters.

1: function C O M P U T E PA R A M E T E R S(σa,σs, f (·),α)
2: σ∗a ← σa, σ∗s ← ασs
3: Compute f ∗1 , . . . , f ∗N0

using (23)
4: N ← 1 . Compute the order N
5: while N < N0 do
6: if not IF EX I S T S(1, f ∗1 , . . . , f ∗N+1) then . Theorem 1
7: break
8: end if
9: N ← N + 1

10: end while
11: repeat . Estimate f ∗(·) numerically
12: Solve the order-N version of (31) to obtain f ∗(·)
13: N ← N − 1
14: until f ∗(·) is NOT overfitting . Section 7.3
15: return σ∗a, σ∗s , f ∗(·)
16: end function

7.2 User-Specified Parameter

We now describe the way in which the user-specified parameter
α in Algorithm 1 affects performance and accuracy, and discuss
how to pick the value of this parameter properly.

Balancing Performance and Accuracy. In practice, the param-
eter α controls the tradeoff between performance and accuracy:
small α offers good performance but potentially poor accuracy;
large α provides good accuracy but at the cost of slower perfor-
mance.

When σ∗a � σ
∗
s (namely the single-scattering albedo is high), it

holds that α= σ∗s /σs ≈ (σ∗s +σ
∗
a)/(σs+σa) = σ∗t/σt . Therefore,

along a unit distance within the altered material, the expected
number of scattering events is roughly a factor α of that within
the original material. For Monte Carlo methods where each scat-
tering event is explicitly simulated, this usually means that α
is linearly related to the rendering time.2 Experimental results
demonstrating this effect are in Section 8.1.

Picking α. Although α can theoretically take any value in (0, 1),
not every value in this range leads to high-quality results. Assum-
ing that the original material is forward-scattering ( f1 > 0), we
found that the resulting accuracy decreases rapidly when f ∗1 < 0.
So we require f ∗1 ≥ 0 which implies

α≥ 1− f1. (32)

For objects with optically thin regions, relatively large α values
are required to produce high-quality results. We observed that
setting α = max(0.3,1 − f1) worked quite well for all our ex-
periments, even under conditions that are highly unforgiving to
errors, such as back lighting. To fine-tune this parameter for
greater speedups, a small number of test renderings can be per-
formed as in Figure 7 but using a low resolution and a small
number of random samples, so that it introduces little overhead
and the resulting α can be reused for high-quality renderings or
generating animated sequences. In this case, we suggest starting
with a smaller α value such as max(0.1, 1− f1) and increasing α
iteratively until the test renderings converge visually.

2With the presence of Russian roulette, the expected number of scat-
tering events can be bounded, which may reduce the rendering time for
large α and makes the relation between α and the rendering time more
complicated. Because performing Russian roulette can introduce a great
amount of noise when the single-scattering albedo σs/σt is close to 1,
how to do it properly is non-trivial and beyond the scope of this paper.
Thus, we did not use this technique when creating our renderings.

7.3 Overfitting

Since overfitting does not happen very frequently and normally
only causes subtle visual differences, we use a simple method
to determine whether a solution f ∗(·) is likely to overfit (based
on its “support”) and reject the overfitting solutions. Examples
of overfitting are in Section 8.2 (Figure 8) and Section 6 of the
supplementary document.

Given a phase function f (·), we define its (normalized) support
nz( f ) to be a fraction between 0 and 1 that equals the portion of
the domain where f (·) is greater than zero. Namely,

nz( f ) :=
|{t : f (t)> 0}|

2
.

For a tabulated phase function f ∗(t) with k bins, nz( f ∗) = k′/k
where k′ is the number of bins in which f ∗(t) is positive.

Intuitively, to approximate a translucent material with an altered
one where scattering occurs less frequently, one needs to allow
light to scatter into a wider range of directions. Our experiments
indicate that given the moment constraints in (29), solution phase
functions with larger supports provide better results. Therefore,
we regularize f ∗(·) by minimizing the 2-norm of the smoothness
term, which favors support instead of sparsity, in Section 5.2.

On the other hand, for fixed α, the altered phase function needs
to be more concentrated (namely, to have smaller support) for
satisfying higher-order similarity relations. Occasionally, these
relations become barely satisfiable, resulting in phase functions
with very limited supports that tend to overfit.

To remedy this problem, we threshold the support of altered
phase functions. Given the original phase function f (·), if the
altered phase function f ∗(·) has nz( f ∗)< β nz( f ) for some con-
stant β ∈ (0,1], we reject it (line 14 of Algorithm 1). In our
experiments, we used β = 0.65.

8 Experimental Results

In this section, we first show how the choice of α in Algorithm 1
balances performance and accuracy (Section 8.1). Next, Sec-
tion 8.2 demonstrates that considering similarity relations beyond
order-1 can provide much better accuracy for complex phase func-
tions. Then, we show that higher-order analysis is required to
capture perceptually significant cues proposed by Gkioulekas et
al. [2013a] (Section 8.3). Finally, Section 8.4 exhibits rendered
results for a variety of translucent media. All our renderings are
created using the Mitsuba physically-based renderer [2010].

8.1 Performance versus Accuracy

We now show how the choice of α affects the performance of
Monte Carlo path tracing and the resulting accuracy through ex-
periments.

We created two scenes each of which contains a translucent object
lit under high-frequency environment lighting [Debevec 1998].
Both objects have HG phase functions with g = 0.95, and the
sizes of these objects are several hundreds times the mean free
path. Then, we generated 7 sets of altered parameters using
Algorithm 1 with α ranging from 0.05 to 0.75.

Figure 6 shows the rendering quality (evaluated using the HDR-
VDP-2 perceptual metric [Mantiuk et al. 2011] where a higher
score means better quality) and the execution time (using stan-
dard volume path tracing) as functions ofα. Note that, in practice,
the speedup does not exactly equal 1/α as the rendering time is
affected by many factors varying among different α values, such

8
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Figure 6: The rendering quality scores (evaluated using the HDR-
VDP-2 metric) and the execution times when changing the value of
α. Data points on the purple curves marked with ‘b’, ‘c’, and ‘d’
respectively correspond to renderings in Figure 7-bcd.

(a) Reference (b) α= 0.05

350 minutes 44 minutes, Score: 66.49

(c) α= 0.1 (d) α= 0.2

63 minutes, Score: 90.94 103 minutes, Score: 98.39

Figure 7: Renderings of a heterogeneous dragon: (a) ground truth;
(b, c, d) renderings using the altered parameters generated using
Algorithm 1 with different α values. As in Figure 1, the relative
error visualizations are included.

as cache performance (which is higher for greater α since the
rendering algorithm tends to access data with better locality).

Figure 7 shows some of the rendered images corresponding to
the purple curves in Figure 6. More renderings are presented in
Section 5 of the supplementary document. We can see that when
α = 0.05, while a 8.0X speedup can be achieved, the resulting
accuracy is unsatisfactory (Figure 7-b). On the other hand, with
α = 0.1 or 0.2 (which respectively offer speedups of 5.5X and
3.4X), significantly better accuracy can be obtained (Figure 7-cd).

8.2 Higher-Order Similarity Relations

Although first-order approximations work adequately for simple
phase functions (such as single-lobe HG), they do not have suffi-
cient representative power to capture higher moments of f (·).

We took a phase function proposed by Gkioulekas et al. [2013a]
which is a linear combination of two distributions:

f (cosθ ) = 0.9 HG(0.95, cosθ ) + 0.1 vMF(−75, cosθ ) (33)

where HG(g, ·) and vMF(κ, ·) denote the HG function with param-
eter g and the von Mises-Fisher distribution with parameter κ,
respectively. Then, we solved the quadratic programming prob-
lem in (31) to construct three altered versions of (33) adhering to
the order-1, order-4, and order-5 similarity relations, respectively.
The first Legendre moments of these altered phase functions are
all zero. Figure 8-a plots (33) and its altered versions.

Figure 8-bcde contains a homogeneous dragon rendered using
these phase functions. We can see that the accuracy offered by
the order-1 version (Figure 8-c) is not ideal as it is not able to

(a)
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c
o
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θ
)

Phase Function Plots

 

 

original

order−1

order−4

order−5

(b1) Reference (b2) Reference

(c1) Order-1 (c2) Order-1

(d1) Order-4 (d2) Order-4

(e1) Order-5 (e2) Order-5, overfitting

Figure 8: A complicated phase function and its three altered ver-
sions respectively satisfying the order-1, order-4, and order-5 sim-
ilarity relations are plotted in (a). Renderings of a homogeneous
dragon (using the plotted phase functions) under side lighting (left)
and front lighting (right) are in (b, c, d, e). The order-1 version
yields poor accuracy; the order-5 version works adequately but not
as well as the order-4 one under both lighting conditions.

capture higher-order features of the original phase function. The
renderings produced using the order-4 version (Figure 8-d), on
the other hand, match the ground truth very well. The order-5
version (the orange curve in Figure 8-a) has a fairly low support
and does not generalize to different lighting conditions as well
as the order-4 one (Figure 8-e), although the visual difference is
subtle. Thus, this solution is overfitting and will be rejected by
Algorithm 1 (which instead returns the order-4 version). Please
refer to Section 6 of the supplementary document for more ex-
amples on overfitting.

8.3 Spanning the 2D Perception Space

Next, we evaluate our method on a family of phase functions
[Gkioulekas et al. 2013a] spanning a 2D perception space. The
two axes of this space capture the optical density (vertical) and
the level of “glass-like” appearance (horizontal).

We picked 40 representatives from this family and rendered an
image for each of them (with the absorption and scattering coeffi-
cients fixed). Figure 9-c shows two of these renderings. Then, we
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Figure 9: 2D embeddings: (a) altered parameters satisfying up to order-5 similarity relations can well maintain the structure of the original
embedding; (b) satisfying only the order-1 relation causes the projections to collapse to a 1D line. The dashed lines in (a, b) connect the
projections of images rendered with the original and the altered parameters. The remaining columns show renderings of two phase functions
(marked with A and B) which have similar first moments: (c) reference renderings, (d, e) images rendered using altered parameters adhering
to higher-order relations and the order-1 relation, respectively. As demonstrated in (e), first-order approximations do not have sufficient
representative power to distinguish these phase functions (such as A and B), causing them to be mapped to similar locations in (b).

applied classical multidimensional scaling (MDS) to create a 2D
embedding of the renderings where a linear transform T assigns
each image a 2D coordinate. The blue squares in Figure 9-ab
illustrate this 2D embedding.

Next, for each phase function, we computed an altered set of
parameters satisfying similarity relations up to order-5 (using Al-
gorithm 1) and rendered an image accordingly. Two of these ren-
dered images are in Figure 9-d. Then, we projected those images
into the previously created 2D space (using the same operator
T). Figure 9-a shows that the projections can well maintain the
structure of the original embedding. The small offsets between
corresponding points in the two embeddings cause little visible
difference, and some of them are caused by the Monte Carlo
noise.

On the other hand, if we use a configuration which satisfies only
the order-1 relation, the resulting renderings are missing impor-
tant visual cues (as illustrated in Figure 9-e), causing their pro-
jections to collapse to a 1D line (Figure 9-b).

Figure 9 demonstrates that higher-order analysis is crucial to
accurately capture perceptually significant visual cues. Section 7
of the supplementary document contains all the images used to
create the three embeddings in Figure 9.

8.4 Rendered Results

Next, we demonstrate that the altered scattering parameters gen-
erated by Algorithm 1 produce appearances that accurately match
the ground truth under a variety of scene configurations.

Figures 1 and 10 exhibit rendered images created using volume
path tracing. Each reference rendering contains an object with a
spatially invariant phase function. Consequently, only one altered
version needs to be computed for each result, which takes less
than a second using our MATLAB implementation of Algorithm 1.

Figure 1 contains a Corinthian capital made of a homogeneous
material with a complicated phase function (the one marked as
‘A’ in Figure 9). It also has a refractive interface modeled using
the microfacet model [Walter et al. 2007]. Altered parameters
generated by our method offer a 3.7X speedup, and the resulting
images match the ground truth very well.

In the first row of Figure 10, we show a sculpture made of a
highly heterogeneous material where the white regions are about
5 times as dense as the green ones, which is easily visible under
back lighting as shown in (a). The sculpture has the complex

phase function described in (33) and a rough dielectric interface.
Our method offers a 2.7X speedup, and the results match the
ground truth very well in both the thick and the thin regions.

The second row of Figure 10 contains renderings of a highly
scattering smoke volume which has a HG phase function with
g = 0.95. Parameters provided by our method, which satisfy the
order-5 similarity relation, lead to a 3.5X speedup while main-
taining good accuracy even at highly thin regions.

In the third row, we show rendered images of a homogeneous
bust made of a material with a complicated phase function and
a rough dielectric interface. Parameters provided by our method
speeds up the rendering process by 3.4X, and the resulting images
match the reference quite well.

9 Conclusion and Future Work

In this paper, we present a complete exposition of similarity the-
ory, providing fundamental insights into the structure of the RTE’s
parameter space. Furthermore, we develop a novel approach to
solve for the altered parameters satisfying the similarity relation
of any given order. Since the altered phase function is not fully
specified by the relations, we present the sufficient and necessary
conditions for its existence and introduce a numerical algorithm
to find one (when it exists) that can produce high-quality render-
ings.

We use two applications, forward and inverse rendering of translu-
cent media, to demonstrate the practical utility of our theory. For
inverse rendering, we present a reparameterized search space to
overcome the challenges caused by the presence of equivalence
classes. For forward rendering, our main application, we develop
an approach (Algorithm 1) to offer speedups to Monte Carlo ren-
dering of optically dense and forward-scattering media without
having to modify the core rendering algorithms. Despite the so-
phistication of the theory, our method is very easy to implement
and introduces negligible overhead to the full rendering pipeline.

There are many areas of future work. For inverse rendering, we
would like to study how similarity theory can improve solving
material appearance acquisition problems with high-dimensional
search spaces on real data. For forward rendering, we plan to ex-
plore heuristics for choosing the value of α adaptively, which is a
generalization of the hybrid framework, so that greater speedups
can be obtained. In addition, the phase functions used in our
results have no spatial variation. For spatially varying phase func-
tions, computing many altered versions can be costly, and inter-
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Back lighting
︷ ︸︸ ︷

Side lighting
︷ ︸︸ ︷

Side lighting (equaltime)
︷ ︸︸ ︷

460.0 mins 168.5 mins (2.7X) 473.4 mins 178.4 mins (2.7X) 22.6 mins 19.7 mins

240.3 mins 67.8 mins (3.5X) 239.5 mins 67.8 mins (3.5X) 8.0 mins 8.4 mins

354.3 mins 108.0 mins (3.3X) 358.4 mins 106.2 mins (3.4X) 24.0 mins 23.6 mins

(a1) Original (a2) Altered (b1) Original (b2) Altered (c1) Original (c2) Altered

Figure 10: Path-traced renderings with various scene configurations. Columns (a, b) contain images rendered using the original and the
altered parameters with the same number of sample paths per pixel. Column (c) uses the same scene configuration as (b) and shows images
rendered in similar time with both parameters (see the insets to assess noise). The relative error maps (using the color scheme in Figure 1)
are included in (a2, b2).

polating them without violating the similarity relation constraints
is a non-trivial problem. Thus, we intend to develop approaches
to efficiently compute and properly interpolate spatially varying
altered phase functions. Finally, for the theory, we would like to
investigate how the generalized similarity relations, such as (19),
could benefit computer graphics applications.
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A Expansion of I(ω) in Spherical Harmonics

In this section, we prove (9) based on the orthonormality of SH.
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where σt r,n follows the definition in (11).
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