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1. Derivation of Algorithm 1

Each coefficient cα
k in Eq. (11) in the main paper is given by a path

integral of the form

cα
k (βo,σ) =

∫
Ωk

f (x̄)
p(x̄)

dx̄, (1)

where Ωk denotes the space of light transport paths with exactly k
volumetric scatterings. Then, it can be shown [KSZ∗15] that

∂cα
k

∂σ
(βo,σ) =

∫
Ωk

f ′(x̄)
p(x̄)

dx̄, (2)

where f ′ is the partial derivative of f with respect to σ.

When performing our symbolic path tracing (Algorithm 1) to
estimate the coefficients cα

k , the path throughput T effectively keeps
track of f/p when incrementally constructing the light transport
path x̄. Thus, Eq. (2) can be estimated by ∂T := [ f ′(x̄)/ f (x̄)]T .

Notice that f (x̄) = σ
k exp(−`σ) f0(x̄), where k is the number of

volumetric scatterings, ` denotes the total length of path segments
inside the grain, and f0 captures all the other terms independent of
grain optical density σ (e.g., BSDF and phase functions). Then, it
can be verified that

∂T =
f ′(x̄)
f (x̄)

T =

∂

∂σ

[
σ

k exp(−`σ)
]

f0(x̄)

σk exp(−`σ) f0(x̄)
T =

(
k
σ
− `

)
T, (3)

giving Line 26 of Algorithm 1.

2. Extended Polynomials

Fitting τ. In §3.4, we face the problem of finding τ > 0 such that
ck ≈ cK exp(τ(K−k)) for all K < k≤ K′. This problem can be for-
mulated as minimizing the L2 difference in the logarithmic space:

E(τ) :=
K′−K

∑
i=1

[log(cK+i)− log(cK exp(−τi))]2

=

(
K′−K

∑
i=1

i2
)

τ
2−2

(
K′−K

∑
i=1

i∆ci

)
τ+

(
K′−K

∑
i=1

∆c2
i

)
.

(4)

To find the minimizer of Eq. (4), we simply differentiate E and set
the derivative to zero, resulting in Eq. (22).
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Figure 1: Rendering highly scattering grains requires using poly-
nomials of very high orders to avoid severe energy loss. In this ex-
ample where the grains have an albedo of 0.9995, using polynomi-
als of order 30 (i.e., K = 30) yields noticeably darker results (mid-
dle vs. left). Our extended polynomial representation with K = 29
(that leads to the same model size) produces renderings matching
the reference much more closely (middle vs. right).

Extended polynomials for derivatives. The coefficients {∂ck}
representing the derivatives of the GSDF and volume rendering
parameters (with respect to grain density σ) can be handled in a
similar way. Specifically, our experiments indicate that they can be
well approximated with polynomials of degree five: for all k > K,
∂ck ≈∑

5
i=0 ui (k−K)i for some u0,u1, . . . ,u5 ∈R (see Figure ??-b).

Then, ∑
∞
k=K+1 ∂ck ak = aK

∑
5
i=0 ui ∑

∞
n=1 nian, which can be calcu-

lated analytically since series of the form ∑
∞
n=1 nian converges (as

0≤ a < 1) and has close-form solutions.

3. Validations of extended polynomials

In main paper §3.1, we presented an extended polynomials formu-
lation to efficiently handle highly scattering grains. Figure 1 shows
a white furnace test using renderings generated with proxy path
tracing (PPT) and volume path tracing (VPT) based on polynomial-
valued GSDF and medium scattering parameters, respectively.
When truncating the polynomials at degree K = 30, the results suf-
fer from severe energy loss. In contrast, when storing polynomial
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Algorithm 1 Estimating α
+
g using symbolic and differentiated PT

1: function ESTIMATEALPHAG+(βo, σ)
2: cα←{0}K+1, ∂cα←{0}K+1

3: Randomly rotate the grain
4: Initialize a ray (r,ω) with incident angle βo
5: if the ray intersects the actual grain then
6: T ← 1 . Path throughput
7: k← 0 . Number of scatterings
8: `← 0 . Distance traveled inside the grain
9: while ray (r,ω) intersects the grain at r′ do

10: if line segment (r,r′) lies inside the grain then
11: t←− log(rand())/σ

12: `← `+min(t, ‖r′−r‖)
13: else
14: t←∞
15: end if
16: if t < ‖r′−r‖ then . Volumetric scattering
17: k← k+1
18: r′← r+ tω
19: Draw a direction ω′ based on the grain’s

phase function
20: else . Interfacial scattering
21: Draw a direction ω′ based on the grain’s BSDF

and scale T accordingly
22: end if
23: r← r′, ω← ω′

24: end while
25: cα[k]← T
26: ∂cα[k]← (k/σ− `)T . Diff. throughput w.r.t. σ

27: end if
28: return cα, ∂cα

29: end function

coefficients up to K = 29 plus an additional term τ (which results
in the same storage), much better accuracy can be achieved.

4. Figures of full resolution

In this section, we provide another version of Figure 9, 11 and 12,
with all images shown in full resolution.
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Algorithm 2 Computing ray-grain intersections

1: function INTERSECTBVH(ray, nd)
2: if nd is a leaf node then
3: INTERSECTTILES(ray, r)
4: end if
5: nd1← nd.left_child, nd2← nd.right_child
6: if ray hits nd2 before nd1 then
7: swap(nd1, nd2)
8: end if
9: INTERSECTBVH(ray, nd1)

10: INTERSECTBVH(ray, nd2)
11: end function

12: function INTERSECTTILES(ray, nd)
13: if node contain a single tile T j then
14: Assume T j to contain grains with indices ranging

from u to v from the template tile
15: return INTERSECTTILE(ray, kd.root, r j, u, v)
16: end if
17: Split nd on the fly into nd1 and nd2
18: if ray hits nd2 before nd1 then
19: swap(nd1, nd2)
20: end if
21: INTERSECTTILES(ray, nd1)
22: INTERSECTTILES(ray, nd2)
23: end function

Algorithm 3 Efficient importance sampling of pxg

1: function SAMPLEGSDFX(βo, σ, a)
2: for i = 0 to K do . Compute pi = sum(Px

g [:, i])
3: pi←

[
sum(Cx[:, i])+ (σ−σ0)sum(∂Cx[:, i])

]
ai

4: end for
5: Draw k ∈ {0, . . . ,K} with probability pk/∑t pt
6: for i = 0 to m−1 do . Compute qi =Qx

g [i,k]
7: qi←Cx[i,k]+ (σ−σ0)∂Cx[i,k]
8: end for
9: Draw j ∈ {0, . . . ,m−1} with probability q j/∑t qt

10: Draw xi uniformly from S j
11: return xi
12: end function
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(a) Reference (EPT)

(b) Ours (EPT+PPT+VPT)

(c) EPT (d) PPT (e) VPT

Figure 2: Figure 9 in the main paper

Truncated polynomial

Reference

Extended polynomial

Figure 3: Figure 11 in the main paper
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Our model (EPT)
10 billion grains

200× 1000× 200× 1000×
Our model (EPT+PPT+VPT)

10 billion grains

200× 1000× 200× 1000×
Our model (EPT)

100 billion grains

25× 200× 1000× 5000×
Our model (EPT+PPT+VPT)

100 billion grains

25× 200× 1000× 5000×

Figure 4: Figure 12 in the main paper
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