
Unbiased Differential Visibility Using Fixed-Step
Walk-on-Spherical-Caps And Closest Silhouettes
LIFAN WU, NVIDIA, USA
NATHAN MORRICAL, NVIDIA, USA
SAI PRAVEEN BANGARU, NVIDIA, USA
ROHAN SAWHNEY, NVIDIA, USA
SHUANG ZHAO, NVIDIA, USA
CHRIS WYMAN, NVIDIA, USA
RAVI RAMAMOORTHI, NVIDIA, USA
AARON LEFOHN, NVIDIA, USA

Shadow view

FD reference

(a) Ours (high spp)
MAE: 0.002

(b) Ours
MAE: 0.032

(c) WAS
MAE: 0.053

(d) PSDR-WAS
MAE: 0.069 −

+

Fig. 1. We introduce a robust method to compute warped-area reparameterization for differential visibility. The key ingredient is a novel velocity construction
using fixed-step walk-on-spherical-caps (WoSC) accelerated by cone queries (illustrated in the left image) that find the geodesic closest distance to the
boundaries on a unit sphere. In this example, we show derivatives of the shadows, cast by a Voronoi-bunny model [Mehta et al. 2022] with 168k triangles
under an area light source, with respect to the 𝑦-translation of the bunny. In (a), we present the gradient image computed by our method with a high sample
count. In (b)–(d), we show equal-sample comparisons with the baseline methods (WAS [Bangaru et al. 2020] and PSDR-WAS [Xu et al. 2023]).

Computing derivatives of path integrals under evolving scene geometry is
a fundamental problem in physics-based differentiable rendering, which
requires differentiating discontinuities in the visibility function. Warped-
area reparameterization is a powerful technique to compute differential
visibility, and key is construction of a velocity field that is continuous in the
domain interior and agrees with defined velocities on boundaries. Robustly
and efficiently constructing such fields remains challenging.

We present a novel velocity field construction for differential visibility.
Inspired by recent Monte Carlo solvers for partial differential equations
(PDEs), we formulate the velocity field via Laplace’s equation and solve

Authors’ Contact Information: Lifan Wu, lifanw@nvidia.com, NVIDIA, USA; Nathan
Morrical, nmorrical@nvidia.com, NVIDIA, USA; Sai Praveen Bangaru, sbangaru@
nvidia.com, NVIDIA, USA; Rohan Sawhney, rsawhney@nvidia.com, NVIDIA, USA;
Shuang Zhao, shz@ics.uci.edu, NVIDIA, USA; Chris Wyman, cwyman@nvidia.com,
NVIDIA, USA; Ravi Ramamoorthi, rramamoorthi@nvidia.com, NVIDIA, USA; Aaron
Lefohn, alefohn@nvidia.com, NVIDIA, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 1557-7368/2025/8-ART
https://doi.org/10.1145/3731174

it with a walk-on-spheres (WoS) algorithm. To improve efficiency, we in-
troduce a fixed-step WoS that terminates random walks after a fixed step
count, resulting in a continuous but non-harmonic velocity field still valid
for warped-area reparameterization. Furthermore, to practically apply our
method to complex 3D scenes, we propose an efficient cone query to find
the closest silhouettes on a boundary. Our cone query finds the closest point
under the geodesic distance on a unit sphere, and is analogous to the clos-
est point query by WoS to compute Euclidean distance. As a result, our
method generalizes WoS to perform random walks on spherical caps over
the unit sphere. We demonstrate that this enables a more robust and efficient
unbiased estimator for differential visibility.

CCS Concepts: • Computing methodologies→ Rendering.

Additional KeyWords and Phrases: Differentiable rendering,Walk on spheres

ACM Reference Format:
Lifan Wu, Nathan Morrical, Sai Praveen Bangaru, Rohan Sawhney, Shuang
Zhao, Chris Wyman, Ravi Ramamoorthi, and Aaron Lefohn. 2025. Unbiased
Differential Visibility Using Fixed-Step Walk-on-Spherical-Caps And Closest
Silhouettes. ACM Trans. Graph. 44, 4 (August 2025), 16 pages. https://doi.org/
10.1145/3731174

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3731174
https://doi.org/10.1145/3731174
https://doi.org/10.1145/3731174

2 • Wu et al.

1 Introduction
Physics-based differentiable rendering computes derivatives of ra-
diometric measurements with respect to scene parameters such as
object shapes. Recently, differentiable rendering techniques have
drawn significant attention due to their applications in a wide range
of fields, including but not limited to scene reconstruction, compu-
tational fabrication, and 3D generative models.

One of the fundamental problems in physics-based differentiable
rendering is computing derivatives of path integrals under evolv-
ing scene geometry, which consists of jump discontinuities usually
caused by occlusions. This is known as the differential visibility prob-
lem. One must be careful when differentiating these discontinuities,
as directly moving the differentiation operator into the rendering
integral does not result in correct derivatives.

To compute differential visibility correctly, two categories ofmeth-
ods have been proposed. The first category involves explicit sam-
pling of visibility discontinuities [Li et al. 2018; Zhang et al. 2019,
2020]. Efficient discontinuity-aware sampling techniques usually
rely on guiding data structures and precomputation [Yan et al. 2022;
Zhang et al. 2023], since detecting discontinuities in 3D scenes is
challenging in general.

Methods in the second category use a geometry-aware reparam-
eterization [Loubet et al. 2019] to avoid sampling discontinuities
explicitly, so they do not have to maintain extra data structures.
Warped-area reparameterization [Bangaru et al. 2020] is the state-
of-the-art method in this category, which applies the divergence
theorem to convert the effects of evolving discontinuity boundaries
to an area integral defined over the interior domain. The boundary
motions are then captured by an interior velocity field that satis-
fies continuity and boundary conditions. At its core, warped-area
reparameterization involves constructing a valid velocity field with
these constraints (§3.2). Unfortunately, existing methods for velocity
construction suffer from robustness and efficiency issues.
In this paper, we propose a novel velocity field construction for

warped-area reparameterization. Our first attempt is formulating
the velocity field by Laplace’s equation with Dirichlet boundary
conditions (§4.1), and our final algorithm is inspired by the walk-on-
spheres (WoS) method for solving PDEs "on-demand" at localized
regions of interest [Sawhney and Crane 2020]. For the first time, we
apply and generalize WoS to warped-area reparameterization for
the differential visibility problem, connecting both fields of differen-
tiable rendering and Monte Carlo PDE solvers together.
Our contributions are:

• Introducing a robust and efficient algorithm for warped-area repa-
rameterization, which constructs a valid velocity field using the
following components.

• Generalizing the original WoS method in two ways: from random-
step to fixed-step (§5.1), and from flat surfaces (walk-on-spheres)
to spherical surfaces (walk-on-spherical-caps) (§6.2).

• Deriving directional derivatives of the constructed velocity to
ensure unbiased estimation of differential visibility (§5.2).

• Introducing an efficient cone query to find the closest point under
the geodesic distance on spherical surfaces (§6.1), enabling a
scalable algorithm for complex 3D scenes.

We validate our theory by comparing results of our derivative
estimators with references computed by finite differences (Figures 8
and 9), and we demonstrate the robustness and efficiency of our
method on differentiable rendering (Figures 1 and 9) and inverse
rendering (Fig. 12) examples.

2 Related Work
Our proposed approach applies a Monte Carlo PDE solver that uses a
novel closest-silhouette query, to efficiently handle discontinuities in
a differentiable renderer. We cover the relevant prior work involving
these topics.

2.1 Handling Discontinuities in Differentiable Rendering
Since renderers often exhibit various discontinuities (such as occlu-
sion, discontinuous shading, etc.), a key aspect of differentiating
them is computing the non-trivial contribution from these disconti-
nuity boundaries. Our work mainly focuses on visibility disconti-
nuities caused by occlusions. Presently, the set of approaches can
be roughly classified into approximations, explicit sampling, and
reparameterization.

Approximation-based methods are frequently employed in cases
where exact derivatives are unnecessary or derivative accuracy
can be improved by increasing the resolution of data structures.
Popular works in this category include SoftRasterizer and Implicit
Differentiable Renderer [Liu et al. 2019; Yariv et al. 2021] that use
smoothing, while NVDiffRast and A𝛿 [Laine et al. 2020; Yang et al.
2022] use pre-filtering. For physics-based renderers, which is our fo-
cus, approximation-based methods either do not apply or introduce
unacceptable bias [Luan et al. 2021; Zhang et al. 2023].
Explicit sampling approaches take an unbiased approach to dif-

ferentiating physics-based renderers. Li et al. [2018] introduced the
edge-sampling method to differentiate a path tracer by decompos-
ing it into “interior” and “boundary” components, and provided an
effective yet expensive discontinuity sampler for the latter. Zhang
et al. [2020] instead formulated the differentiation in the path space
(PSDR). Several techniques have been proposed to improve the sam-
pling efficiency of the boundary integral [Yan et al. 2022; Zhang
et al. 2023], usually involving pre-processing and data-structure
construction to organize the discontinuities. Since ensuring sam-
plers to be unbiased tends to be the hardest part, some approaches
[Zhang et al. 2022; Wang et al. 2024] avoid additional overhead by
proposing approximate or relaxed estimators.

Reparameterization-based approaches avoid sampling discontinu-
ities directly, by instead applying a geometry-aware, infinitesimal
transformation to the ray or path sampled in standard path tracing.
Loubet et al. [2019] were the first to propose such a light-weight
reparameterization, though their formulation is biased. Bangaru
et al. [2020] proposed warped-area sampling that applies the di-
vergence theorem to the boundary integral to obtain a consistent
estimator for the reparameterization. Xu et al. [2023] extended this
to the path space by deriving the reparameterized variant of PSDR’s
boundary integral [Zhang et al. 2020]. Warped-area reparameteri-
zation has also been applied to differentiate implicit surfaces such
as SDFs [Vicini et al. 2022; Bangaru et al. 2022], where distance
information makes computing a valid warp function easy. Our work

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Unbiased Differential Visibility Using Fixed-Step Walk-on-Spherical-Caps And Closest Silhouettes • 3

improves the robustness and efficiency of warped-area reparame-
terization. Although it might be possible to extend our method to a
wider range of geometric representations such as SDFs, we focus
on differentiating triangular meshes in this work.

Efficient Differentiable Rendering. With applications in high fi-
delity 3D reconstruction and generative models, the performance of
differentiable rendering is becoming increasingly important. Several
works have advanced this area through (i) GPU-based frameworks
that leverage hardware acceleration [Jakob et al. 2022a; Bangaru
et al. 2023], (ii) systematic optimizations such as adjoint ray trac-
ing [Nimier-David et al. 2020; Vicini et al. 2021], and (iii) variance
reduction techniques [Zhang et al. 2021a; Zeltner et al. 2021; Nicolet
et al. 2023; Chang et al. 2023; Wang et al. 2023; Belhe et al. 2024],
including better data structures for importance sampling explicit
discontinuities [Zhang et al. 2021b; Yan et al. 2022; Zhang et al. 2023;
Tong et al. 2023].

2.2 Monte Carlo PDE Solvers
Grid-free Monte Carlo methods for solving PDEs have recently
emerged as powerful alternatives to grid-based finite-element meth-
ods. Unlike the latter, Monte Carlo methods can provide unbiased
estimations of a PDE solution at any point of interest, without
solving over an entire domain. The most popular approach is the
walk-on-spheres (WoS) algorithm, originally by Mueller et al. [1956],
and revived into its modern form by Sawhney et al. [2020].
Several extensions have since been proposed to extend the ap-

plicable class of PDEs and boundary conditions [Nabizadeh et al.
2021; Sawhney et al. 2022, 2023; Sugimoto et al. 2023; Miller et al.
2024b], while others target variance reduction via caching [Miller
et al. 2023; Li et al. 2023], and bidirectional walks [Qi et al. 2022],
taking inspiration the Monte Carlo rendering literature. Although
prior work in this area is largely limited to random walks in the
entire Euclidean space, Sugimoto et al. [2024] introduced a pro-
jected walk-on-spheres (PWoS) method that generalizes WoS for
surface PDEs. Similarly, our walk-on-spherical-caps algorithm also
generalizes WoS to spherical surfaces, but for the purpose of repa-
rameterizing differential path integrals rather than solving PDEs.
Exploring the applicability of PWoS to our setting is left to future
work.

Leveraging recent developments in physics-based differentiable
rendering, several recent works develop differential-variants of WoS
to estimate parameter derivatives for PDE-constrained inverse prob-
lems [Miller et al. 2024a; Yilmazer et al. 2024; Yu et al. 2024]. Though
our work focuses on computing spatial derivatives on spherical
surfaces, it might be possible to gain additional insights for efficient
derivative computation from this line of work.
Finally, Roger et al. [2005] proposed a Monte Carlo estimator

to compute derivatives of integrals with deformable domains for
sensitivity analysis, which also leads to a similar boundary value
interpolation problem. Although they formulated this problem as
an 𝑛-D Laplace’s equation with Dirichlet boundary conditions, their
work preceded the recent emerging interest in WoS-based tech-
niques.

2.3 Accelerated Spatial Queries in Graphics
Accelerated queries such as closest-point, k-nearest-neighbors and
ray-intersection account for a very large body of work with wide
ranging impact. We point the reader to the work by Hjaltson et
al. [1999] and Hanan et al. [2005] for general-purpose queries. Our
focus is on SIMD-based spatial queries since we target differentiable
renderers, which now use hardware-accelerated ray tracing [Jakob
et al. 2022a; Bangaru et al. 2023].

Euclidean Closest Point/Silhouette Queries. There are several pro-
posed methods for accelerated closest-point queries. The linear BVH
approach by Jakob et al. [Jakob and Guthe 2021] is considered one of
the most performant, though there are several alternatives that oper-
ate on grids [Purcell et al. 2003; Leite et al. 2009; Schauer et al. 2016].
Such queries have been used by walk-on-spheres [Sawhney and
Crane 2020] (closest point query) and walk-on-stars [Sawhney et al.
2023] (in particular, a closest silhouette point query that leverages the
spatialized normal cone hierarchy by Johnson et al. [2001]). However,
these queries operate on, and compute distances between, points in
Euclidean space. Our closest silhouette ray query computes geodesic
distance for geometry projected onto an arbitrarily-positioned unit
sphere.

3 Preliminaries
In this section, we summarize the necessary and most relevant
background for our work. Interested readers are encouraged to refer
to the original papers [Zhang et al. 2020; Bangaru et al. 2020; Xu
et al. 2023] for more details.

3.1 Warped-Area Reparameterization
Path integrals for primal rendering. The path integral formula-

tion [Veach 1997] is the foundation of physics-based rendering. It
expresses a radiometric measurement as

𝐼 =

∫
𝛀

𝑓 (�̄�) d𝜇 (�̄�) , (1)

where �̄� = (𝒑0, . . . ,𝒑𝑁) is a light path of length 𝑁 with 𝒑0 on a
light source and 𝒑𝑁 on the camera, 𝛀 is the space of all finite-length
light paths, 𝑓 is the measurement contribution function, and 𝜇 is
the area-product measure.

Differential path integrals. Since the integrand 𝑓 of Eq. (1) has
visibility discontinuities caused by geometric occlusions, we use
the Reynolds transport theorem to differentiate the path integral
with respect to any scene parameter 𝜃 , leading to a differential path
integral [Zhang et al. 2020]:

𝜕𝜃 𝐼 =

∫
𝛀

𝜕𝜃 𝑓 (�̄�) d𝜇 (�̄�) +
∫
𝜕𝛀

𝑓 (�̄�)𝑉 (�̄�) d ¤𝜇 (�̄�)︸ ︷︷ ︸
=: 𝐼bdr

. (2)

The first term on the right-hand side is an integral over the same
path space 𝛀 as the path integral 𝐼 . The second term 𝐼bdr is a bound-
ary path integral defined over the boundary path space 𝜕𝛀, which
consists of light paths which graze the discontinuous contours of
the scene objects. The scalar normal velocity 𝑉 (�̄�) captures the
motion of the evolving visibility discontinuities.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Wu et al.

ALGORITHM 1: Estimating the boundary path integral 𝐼bdr.

1 EstIBoundary()

2 begin
3 �̄�, pdf ← SamplePath() ;
4 𝐼bdr ← 0;
5 for 𝐾 = 0 to 𝑁 − 1 do
6 Compute 𝑓𝐾 and ∇𝑓𝐾 via automatic differentiation;

/* Use fixed-step WoS (Algorithm 3) or

fixed-step WoSC (Algorithm 7) */

7 𝒗𝐾 , ∇ · 𝒗𝐾 ← ComputeV(𝒑𝐾 , 𝒑𝐾+1) ;
8 𝐼bdr ← 𝐼bdr + (∇𝑓𝐾 · 𝒗𝐾) + 𝑓𝐾 (∇ · 𝒗𝐾) ;
9 end

10 return 𝐼bdr/pdf ;
11 end

𝒑𝐾

𝒑𝐾+1

Bwa

(a) 3D View

𝒑𝐾 ΔB

𝒗𝜕

𝒗𝜕 = 0 Bwa

(b) Projection View

Fig. 2. We illustrate the geometric configuration for warped-area reparame-
terization (WAR) given a single path segment 𝒑𝐾𝒑𝐾+1 in two views. WAR
aims to construct a continuous velocity field 𝒗 over the visible region Bwa

(the gray region), while ensuring 𝒗 agrees with the boundary velocities 𝒗𝜕

defined on the set of boundary curves 𝜕Bwa. The boundary curves include
1) visibility boundaries ΔB caused by occlusion (the blue triangle) and 2)
topological boundaries of surfaces (the black rectangle).

Warped-area reparameterization. The key insight of warped-area
reparameterization [Bangaru et al. 2020; Xu et al. 2023] is using the
divergence theorem to convert boundary integrals to area integrals.
With that, the boundary path integral in Eq. (2) can be rewritten as

𝐼bdr =

∫
𝛀

𝑁−1∑︁
𝐾=0
[∇ · (𝑓𝐾 𝒗𝐾)] (𝒑𝐾) d𝜇 (�̄�) , (3)

where 𝑓𝐾 is the measurement contribution function that treats 𝒑𝐾
as the only changing variable (all the other vertices are considered
as fixed), and 𝒗𝐾 is a continuous velocity field. Constructing 𝒗𝐾 is
the main focus of this paper.

We outline an estimator for 𝐼bdr in Algorithm 1. Given a sampled
full light path �̄� = (𝒑0, . . . ,𝒑𝑁), the warped-area reparameteriza-
tion is computed at every vertex 𝒑𝐾 for 0 ≤ 𝐾 ≤ 𝑁 − 1 (Line 5),
meaning that we need to construct various continuous velocity
fields 𝒗𝐾 for each 𝒑𝐾 . The measurement contribution function 𝑓𝐾
and its gradient ∇𝑓𝐾 can be directly computed via automatic dif-
ferentiation (AD). On the other hand, constructing a valid velocity
field 𝒗𝐾 and computing its divergence ∇ · 𝒗𝐾 (Line 7) is the main
challenge of warped-area reparameterization, which we detail next.

3.2 Problem: Construction of Velocity Fields
We focus on reparameterization over a single path segment 𝒑𝐾𝒑𝐾+1
and illustrate this in Fig. 2. Assuming 𝒑𝐾+1 to be the shading point,
we aim to construct a velocity field 𝒗 1 around the other endpoint
𝒑𝐾 for warped-area reparameterization. Specifically, let B denote
object surfaces (e.g., the surface where 𝒑𝐾 resides). The velocity
field

𝒗 : Bwa �𝑻𝒑𝐾 (B) (4)
should be defined over the visible surface regions with respect to
the shading point (the gray region in Fig. 2), i.e.,

Bwa = {𝒙 ∈ B |V(𝒙↔𝒑𝐾+1) = 1} ⊂ B , (5)

and the velocity vectors live on 𝑻𝒑𝐾 (B), representing the tangent
plane at 𝒑𝐾 .

The boundary 𝜕Bwa of this domain Bwa consists of two types of
boundary curves:
• Visibility boundaries ΔB caused by occlusion (the blue triangle in
Fig. 2; they are the perspective projections of the occluder’s edges).
The visibility boundaries may depend on the evolving scene pa-
rameter 𝜃 , so their velocities 𝒗𝜕 = 𝜕𝜃𝒙 for all 𝒙 ∈ ΔB are uniquely
determined by the material-form reparameterization [Zhang et al.
2020; Xu et al. 2023]. 2

• Topological boundaries of object surfaces (e.g., edges of a plane
shown as the black rectangle in Fig. 2). Because of the material-
form reparameterization, they are considered to be static and thus
have zero velocity, i.e., 𝒗𝜕 = 0.
Our goal is to construct 𝒗 such that

𝒗 ∈ 𝑪0 onBwa ,

𝒗 = 𝒗𝜕 on 𝜕Bwa .
(6)

While the boundary velocities are uniquely defined, there exist infin-
itely many valid interior velocity fields 𝒗 that satisfy the continuity 3

and boundary consistency requirements in Eq. (6). All valid velocity
fields lead to the same result for the boundary integral in Eq. (3), but
they may have different implications regarding sampling efficiency
and robustness, leaving a large design space for constructing 𝒗.

Existing solution. In the following, we present one approach to
constructing a valid velocity field 𝒗, whichwas used in priorwork [Ban-
garu et al. 2020; Xu et al. 2023]. It takes two steps. First, a discon-
tinuous velocity field 𝒗dis is defined on the entire surface B such
that 𝒗dis (𝒑) = 𝒗𝜕 (𝒑) for all 𝒑 on the visibility boundaries ΔB. Then,
for any interior point 𝒑 ∈ Bwa, a few auxiliary points 𝒒 are sam-
pled around it and a continuous velocity field 𝒗 is computed by
smoothing 𝒗dis using a spatially varying weighting function𝑤 :

𝒗 (𝒑) =
∫
B 𝑤 (𝒒;𝒑)𝒗dis (𝒒) d𝐴(𝒒)∫
B 𝑤 (𝒒;𝒑) d𝐴(𝒒)

, (7)

where the weighting function is defined as

𝑤 (𝒒;𝒑) = 1
𝐷 (𝒒;𝒑) + 𝐵(𝒒) . (8)

1We drop the subscript 𝐾 of the velocity field for notational simplicity.
2For the exact formula of 𝒗𝜕 , please refer to Section 3.1.2 of Xu et al.’s [2023] paper.
3In fact, 𝒗 also needs to be differentiable almost everywhere except on a set of measure
zero. For example, 𝒗 cannot be the Weierstrass function.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Unbiased Differential Visibility Using Fixed-Step Walk-on-Spherical-Caps And Closest Silhouettes • 5

(a) Problem (b) Prior work [Bangaru et al. 2020] (c) Our fixed-step WoS

Fig. 3. A 1D toy example. (a) We want to use warped-area reparameterization to compute the derivative of the integral 𝐼 defined in Eq. (10) (the area of the
blue region) with respect to the changing discontinuity 𝜃 . (b) Plots of the velocity functions and their divergences constructed by the prior method (Eq. (7))
and solving Laplace’s equation. (c) Plots of the velocity functions and their divergences constructed by our𝑀-step WoS method with𝑀 = 1, 4, and 16.

Here, 𝐷 (𝒒;𝒑) is the distance function that goes to zero when 𝒒 ap-
proaches 𝒑, and 𝐵(𝒒) is the boundary test function that is designed
to approach zero when 𝒒 approaches the visibility boundary. By
design, when 𝒑 is on the visibility boundary, the weighting function
𝑤 (·;𝒑) should behave like a Dirac delta function so that the velocity
fields are consistent, i.e., 𝒗 (𝒑) = 𝒗dis (𝒑).

Limitations of prior work. The weighted-average-based velocity
interpolation strategy described above has several issues.
• Biased estimator. Prior work [Bangaru et al. 2020; Xu et al. 2023]
used a biased-but-consistent estimator to compute 𝒗 in Eq. (7).
Specifically, integrals at the numerator and the denominator in
Eq. (7) are estimated individually first and followed by the di-
vision; it is biased since E[1/𝑓] ≠ 1/E[𝑓]. Although debiasing
the estimator using Russian roulette is possible [McLeish 2011;
Bangaru et al. 2020], it is expensive and numerically unstable
because the weighting function𝑤 is unbounded (𝑤 approaches
the Dirac delta function when points are close to the boundary).

• Robustness. In Eq. (8), the distance function and the boundary
test function are designed empirically, involving a few hyperpa-
rameters that are counterintuitive to tune in practice. Additionally,
the unbounded weighting function𝑤 often has large values near
the boundary and leads to numerical instability.

• Sampling efficiency. The resulting velocity field 𝒗 is zero inmost
of the interior domain and changes drastically near the visibility
boundary. Therefore, its divergence ∇ ·𝒗 has very narrow support
of non-zero values, concentrating near discontinuous boundaries,
which makes it difficult to sample.

3.3 Toy Example in 1D
To develop intuition for differentiating integrals with discontinuities,
we first show a 1D toy example in Fig. 3. Let 𝑦 be a step function
whose jumping discontinuity is controlled by 𝜃 :

𝑦 (𝑥 ;𝜃) =
{1, if 𝑥 < 𝜃,

0, if 𝑥 ≥ 𝜃 . (9)

We want to compute the derivative of an integral

𝐼 (𝜃) =
∫ ∞

0
𝑦 (𝑥 ;𝜃) d𝑥 (10)

with respect to 𝜃 at 𝜃0 = 1. Note that this derivative can be computed
analytically as 𝜕𝜃 𝐼 |𝜃=𝜃0 = 1.
Alternatively, one can use warped-area reparameterization to

compute this derivative as

𝜕𝜃 𝐼 |𝜃=1 =

∫ 1

0
(∇ · 𝑣) (𝑥) d𝑥 , (11)

where 𝑣 should be continuous within the interval [0, 1] and equal
to the boundary velocities as 𝑣 (0) = 0 (the left end is static) and
𝑣 (1) = 1 (the right end is changing). As shown in Fig. 3 (b), the
velocity 𝒗 constructed using Eq. (7) is mostly zero and changes
dramatically near the discontinuity. As a result, its divergence ∇ · 𝒗
(it is actually 𝜕𝑥𝑣 in 1D) has a narrow support of non-zero values.

A better way to construct 𝑣 , which we will discuss in §4.1, is
solving a Laplace’s equation with Dirichlet boundary conditions
𝑣 (0) = 0 and 𝑣 (1) = 1, leading to a harmonic velocity function
𝑣 (𝑥) = 𝑥 (see the blue curve in Fig. 3 (b)). Since its divergence is
constant, a Monte Carlo estimator for computing 𝜕𝜃 𝐼 in Eq. (11) will
have zero variance in this 1D example.

In general, a harmonic velocity field does not have analytic solu-
tions, sowe have to compute it numerically. TheWoSmethod [Muller
1956; Sawhney and Crane 2020] is a powerful tool to construct such
harmonic velocity fields, but it introduces noise due to randomwalks.
We propose a fixed-step WoS method (§5) to improve the efficiency
of velocity construction. Fig. 3 (c) shows the velocity functions con-
structed using different numbers of steps and their corresponding
divergences. They are all valid constructions for warped-area repa-
rameterization, leading to the same result of 𝜕𝜃 𝐼 = 1.

4 Overview
We aim to construct a valid velocity field 𝒗 over the interior domain
given the boundary velocities 𝒗𝜕 . Because the requirements of 𝒗
formulated in Eq. (6) look like a boundary value problem, one could
construct 𝒗 as the solution to a Laplace’s equation with Dirichlet
boundary conditions. Our first attempt to tackle the velocity con-
struction problem is using the walk-on-spheres (WoS) algorithm
to solve this Laplace’s equation (§4.1). We show that it already ad-
dresses the issues of existing methods (discussed earlier in §3.2) to
some extent: the WoS estimators are unbiased and robust, and the

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Wu et al.

𝒙0

𝒙1

𝒙2

𝒙3

𝒙4

𝜀

(a) Random-step WoS

𝒙0
𝒙1

𝒛1

(b) Fixed-step WoS with𝑀 = 1.

Fig. 4. (a) The original random-step WoS algorithm starts at 𝒙0 and stops
at 𝒙4, which is inside the 𝜀-shell near the boundary. (b) Our fixed-step walk
stops after one step at 𝒙1 and grabs the value from its closest point 𝒛1 on
the boundary.

resulting harmonic velocity field is very smooth and easy to sample
(see Fig. 3 (b)).

There are several ways to solve Laplace’s equations such as finite
element methods (FEM). We instead choose to use WoS because
it can be evaluated “on demand” at any point without discretizing
and computing solutions over the entire domain. For the first time,
we show that the warped-area reparameterization for differential
visibility can be computed using WoS, connecting the realms of
differentiable rendering and Monte Carlo PDE solvers.
Moreover, to push this idea further, we discuss two challenges

that emerge from the WoS-based velocity construction and propose
our solutions to address them (§4.2). First, we introduce a fixed-step
WoS algorithm that terminates after𝑀 steps, and grabs values from
the closest points on the boundaries, making the velocity estimation
more efficient and robust (§5). Second, to make our method scalable
to complex 3D scenes with a large number of triangles, we present
a novel walk-on-spherical-caps algorithm equipped with an efficient
closest silhouette ray query, which extends the original WoS method
from flat surfaces (2D Euclidean space) to spherical surfaces (§6).

4.1 First Attempt: Constructing 𝒗 Using Walk-on-Spheres
According to our problem specification in §3.1, given boundary
velocities 𝒗𝜕 , our goal is to construct a continuous velocity field
𝒗 over the interior domain Bwa which is a subset of 2D surfaces
(e.g., the triangle where 𝒑 resides) defined in Eq. (5). This is a typical
boundary value problem that can be modeled as a Laplace’s equation
with Dirichlet boundary conditions:

Δ𝒗 (𝒑) = 0 onBwa ,

𝒗 (𝒑) = 𝒗𝜕 (𝒑) on 𝜕Bwa .
(12)

The velocity construction problem boils down to solving this equa-
tion on 2D surfaces. The resulting velocity field 𝒗, which is the
solution to this PDE, satisfies the continuity (𝒗 is harmonic) and
boundary consistency (constrained by the Dirichlet boundary con-
ditions) requirements defined in Eq. (6). We use WoS to estimate the
harmonic velocity field 𝒗, which we briefly recap below:

Walk-on-Spheres. The WoS algorithm estimates the solution 𝒗 (𝒑)
at any interior point 𝒑 ∈ Bwa by sampling random walks jumping
on 𝑛-dimensional spheres; in our case, it is technically 2D “walk-on-
circles” because the Laplace’s equation is defined on 2D surfaces.
TheWoS algorithm is based on the mean value property of harmonic

functions:

𝒗 (𝒑) = 1
|𝐵(𝒑, 𝑟) |

∫
𝐵 (𝒑,𝑟)

𝒗 (𝒚) d𝒚 =
1

|𝜕𝐵(𝒑, 𝑟) |

∫
𝜕𝐵 (𝒑,𝑟)

𝒗 (𝒛) d𝒛 ,

(13)
where 𝐵(𝒑, 𝑟) is a 2D inner disk that is centered at 𝒑 with radius
𝑟 and entirely inside the interior domain Bwa, and its boundary
𝜕𝐵(𝒑, 𝑟) is a circle.
We illustrate a 2D WoS random walk in Fig. 4 (a). The walk starts

at 𝒙0 = 𝒑. At each step 𝑘 , it randomly jumps to a next point 𝒙𝑘+1
uniformly sampled on an inner circle. To achieve faster convergence,
we often use the maximum inner circle 𝜕𝐵𝒙𝑘 that is centered at 𝒙𝑘
with radius

𝐷 (𝒙𝑘) = ∥𝒙𝑘 − cp(𝒙𝑘)∥ , (14)
where cp(𝒙𝑘) indicates the closest point on the boundaries with
respect to 𝒙𝑘 :

cp(𝒙𝑘) = argmin
𝒛∈𝜕Bwa

∥𝒙𝑘 − 𝒛∥ . (15)

Note that 𝐷 (·) is actually a (unsigned) distance field to the bound-
aries. The random walk continues until it reaches a point near the
boundaries, i.e., the distance function 𝐷 (𝒙𝑘) is smaller than a stop-
ping threshold 𝜀. In summary, a WoS estimator can be formulated
recursively as

⟨𝒗 (𝒙𝑘)⟩ =
{
𝒗𝜕 (cp(𝒙𝑘)), if 𝐷 (𝒙𝑘) < 𝜀,
⟨𝒗 (𝒙𝑘+1)⟩, 𝒙𝑘+1 ∼ U(𝜕𝐵𝒙𝑘),

(16)

whereU(·) denotes the uniform distribution. This WoS estimator
has negligible bias that comes from the 𝜀-shell near the boundaries,
and it terminates in 𝑂 (log 1/𝜀) steps [Binder and Braverman 2012]

We also want to compute the gradient of 𝒗 [Sawhney and Crane
2020], which can be estimated recursively with Eq. (16) :

⟨∇𝒗 (𝒙0)⟩ =
|𝜕𝐵𝒙 |
|𝐵𝒙 |

⟨𝑢 (𝒙1)⟩︸ ︷︷ ︸
Eq. (16)

𝒙1 − 𝒙0

𝐷 (𝒙0)
, 𝒙1 ∼ U(𝜕𝐵𝒙0) . (17)

4.2 Challenges and Our Solution
Inefficiency due to long walks. Random walks in the original WoS

algorithm terminatewhen they reach the 𝜀-shell near the boundaries,
which takes a random number of steps (so we refer to it as random-
step WoS). This randomness may lead to inefficiency because it
might take many steps for a random walk to terminate when the
shapes of the boundaries are complex.
To improve the efficiency of the WoS algorithm, we introduce a

fixed-step variant that terminates random walks after a fixed num-
ber of 𝑀 steps and grabs the value from the closest point on the
boundaries (see Fig. 4 (b)). Since a random walk is guaranteed to
terminate after𝑀 steps, we can avoid having potentially long walks,
especially when the stopping threshold 𝜀 is small (to keep the bias
low) or the shapes of boundaries are complex. It also creates a more
balanced workload distribution for parallel computing; otherwise,
multiple random walks in the random-step WoS may stop in a dif-
ferent number of steps. Lastly, the hyperparameter of fixed-step
WoS is the maximum number of steps𝑀 rather than the stopping
threshold 𝜀. It removes the bias caused by 𝜀 and enables the flexibil-
ity of balancing the computational cost and the smoothness of the
velocity field.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Unbiased Differential Visibility Using Fixed-Step Walk-on-Spherical-Caps And Closest Silhouettes • 7

We discuss the details of our fixed-step WoS algorithm in §5. A
critical question is whether the velocity field constructed by the
fixed-step WoS is still valid for warped-area reparameterization.
In §5.1, we demonstrate that the constructed velocity field still
satisfies the continuity and boundary consistency requirements in
Eq. (6), even though it is not harmonic anymore. Once we validate
the velocity construction, we show how to estimate its directional
derivatives and compute the reparameterization using our fixed-step
WoS estimators in §5.2.

Scalability with geometric complexity. In the WoS process, com-
puting the closest point function cp(·) defined in Eq. (15) can be
computationally expensive. It requires explicitly computing the vis-
ibility boundaries with respect to arbitrary shading points, which
effectively treats every shading point as a “camera” and “rasterizes”
all the triangles in the scene (as potential occluders). Each “rasteri-
zation” takes linear time proportional to the number of triangles,
and it is impractical to precompute the visibility boundaries at all
shading points.

In §6, we show how to make our method scalable to complex 3D
scenes with a large number of triangles. We observe that, although
cp(·) is expensive to compute in general, its geodesic variant cpS2 (·)
defined spherical surfaces as Eq. (30) can be efficiently computed
by traversing a spatial hierarchy (§6.1). With this efficient geodesic
closest point query, we introduce the walk on spherical caps (WoSC)
algorithm, which generalizes the original WoS method from flat
surface (2D Euclidean space) to the spherical domain S2. We develop
fixed-step WoSC estimators to construct a valid velocity field on the
spherical surface and estimate its directional derivatives, which are
used in our final warped-area reparameterization algorithm (§6.2).

5 Reparameterization Using Fixed-Step Walk-on-Spheres
To alleviate the inefficiency caused by potential long random walks
in the original WoS algorithm, we propose a new fixed-step walk-on-
spheres method that is guaranteed to terminate after a fixed number
of𝑀 steps. We first prove that the constructed velocity field 𝒗 (𝑀)
satisfies the continuity and boundary consistency requirements
described in Eq. (6) (§5.1). Then, we derive its directional derivatives
𝜕𝒅𝒗

(𝑀) with respect to any vector 𝒅 on a tangent plane, and we
present the warped-area reparameterization algorithm using our
fixed-step WoS estimators for 𝒗 (𝑀) and 𝜕𝒅𝒗 (𝑀) (§5.2).

5.1 Walk-on-Spheres: From Random Steps to Fixed Steps
Our fixed-step WoS algorithm terminates in 𝑀 steps rather than
a random number of steps (stop until reaching the 𝜀-shell) as in
the original WoS algorithm. Besides the aforementioned benefits in
efficiency and robustness, using the fixed-step WoS for warped-area
reparameterization actually makes more sense because the reparam-
eterization only requires a continuous velocity field; a harmonic
one with 𝑪∞-continuity is not needed for this purpose.

We illustrate our fixed-stepWoS algorithm in Fig. 4 (b) and present
the pseudocode in Algorithm 2. It is very similar to the original WoS
except that 1) random walks will terminate after 𝑀 steps (Line 5)
and 2) the next point is sampled inside the disk rather than on the

ALGORITHM 2: Estimating the velocity 𝒗 (𝑀)

1 EstV(𝒑𝐾 , 𝒑𝐾+1,𝑀)

2 begin
3 Compute the visibility boundaries ΔB with respect to 𝒑𝐾+1;

/* Find the closest point to boundaries */

4 𝒛 ← cp(𝒑𝐾) ;
/* Terminate if reaching the maximum step */

5 if 𝑀 = 0 then
6 𝒗 ← 𝒗𝜕 (𝒛) ;
7 end
8 else
9 𝐷 ← ∥𝒑𝐾 − 𝒛 ∥ ;

10 𝒚, pdf ← SampleInsideDisk(𝒑𝐾 , 𝐷) ;
11 area← 𝜋𝐷2;
12 𝒗 ← EstV(𝒚, 𝒑𝐾+1, 𝑀 − 1)/(pdf · area) ;
13 end
14 return 𝒗;
15 end

circle (Line 10; since we use the volumetric version 4 of the mean
value theorem). In the following, we will verify that our𝑀-stepWoS
algorithm (for𝑀 > 0) constructs a valid velocity field that satisfies
the continuity and boundary consistency requirements.

Base cases. We start with 𝑀 = 0, just grabbing values from the
closest point on the boundaries without any walk. Assuming that
𝒗𝜕 is continuous on the boundaries, this results in a piecewise con-
tinuous function

𝒗 (0) (𝒑) = 𝒗𝜕 (cp(𝒑)) . (18)
Clearly, this function 𝒗 (0) satisfies boundary consistency because
cp(𝒑) = 𝒑 for any 𝒑 ∈ 𝜕Bwa. However, it does not meet the conti-
nuity requirement because it has discontinuities when 𝒑 is on the
medial axis of the boundaries, i.e., 𝒑 has more than one closest point.
When 𝑀 = 1, we use the volumetric version of the mean value

property and construct 𝒗 (1) by taking average of 𝒗 (0) over the max-
imum inner disk:

𝒗 (1) (𝒑) = 1
|𝐵𝒑 |

∫
𝐵𝒑

𝒗 (0) (𝒚) d𝒚, (19)

where 𝐵𝒑 is the maximum inner disk that is centered at 𝒑 and has
radius 𝐷 (𝒑), and |𝐵𝒑 | = 𝜋 (𝐷 (𝒑))2 denotes its area. Note that 𝒗 (1)
also satisfies the boundary consistency. We prove its continuity, i.e.
𝒗 (1) ∈ 𝑪0, in Appendix A.

Generalization. For any𝑀 > 1, the fixed-step WoS process runs
recursively and we have

𝒗 (𝑀) (𝒑) = 1
|𝐵𝒑 |

∫
𝐵𝒑

𝒗 (𝑀−1) (𝒚) d𝒚. (20)

Starting from 𝒗 (1) ∈ 𝑪0, each step of integration raises the smooth-
ness of the function by one degree. So 𝒗 (𝑀) ∈ 𝑪𝑀−1 ⊆ 𝑪0 for any
𝑀 ≥ 1 is a valid velocity field for warped-area reparameterization.

4Sampling on the circle’s boundary as was originally done in the work of Sawhney and
Crane [2020] will break the continuity of the constructed velocity 𝒗. This is easy to
verify using the same 1D example in §3.3.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Wu et al.

ALGORITHM 3: Computing the velocity 𝒗 and its divergence ∇ · 𝒗.
1 ComputeV(𝒑𝐾 , 𝒑𝐾+1)

2 begin
/* Estimate the velocity 𝒗 */

3 𝒗 ← EstV(𝒑𝐾 , 𝒑𝐾+1, 𝑀) ; // Algorithm 2

/* Estimate the divergence ∇ · 𝒗 */

4 ∇ · 𝒗 ← 0;
5 Specify a pair of orthogonal unit vectors 𝒔 and 𝒕 on the tangent

plane at 𝒑𝐾 ;
6 for 𝒅 ∈ {𝒔, 𝒕 } do
7 𝜕𝒅𝒗 ← EstDerV(𝒑𝐾 , 𝒑𝐾+1, 𝒅, 𝑀) ; // Algorithm 4

8 ∇ · 𝒗 ← ∇ · 𝒗 + (𝜕𝒅𝒗 · 𝒅) ;
9 end

10 return 𝒗, ∇ · 𝒗;
11 end

As𝑀 goes to infinity, our𝑀-step WoSC behaves like the random-
step variant, resulting in a harmonic function with 𝑪∞-continuity.

5.2 Reparameterization with 𝒗 (𝑀) and 𝜕𝒅𝒗 (𝑀)

In addition to 𝒗 (𝑀) , warped-area reparameterization also requires
computing the divergence of the constructed velocity field 𝒗 (𝑀) ,
which is outlined in Algorithm 3. Since the field 𝒗 (𝑀) lives on the
tangent plane at 𝒑𝐾 (see Eq. (4)), we can find a pair of orthogonal
unit vectors (𝒔, 𝒕) on this tangent plane (Line 5) and formulate the
divergence as

∇ · 𝒗 (𝑀) =
(
𝜕𝒔

𝜕𝒕

)
·
(
𝒗 (𝑀) · 𝒔

𝒗 (𝑀) · 𝒕

)
= (𝜕𝒔𝒗 (𝑀) · 𝒔) + (𝜕𝒕𝒗 (𝑀) · 𝒕) . (21)

As a result, computing ∇ · 𝒗 (𝑀) boils down to computing the direc-
tional derivative 𝜕𝒅𝒗 (𝑀) with respect to any unit vector 𝒅 on the
tangent plane at 𝒑𝐾 (Lines 6–9).

Estimating 𝜕𝒅𝒗 (𝑀) . Since 𝒗 (𝑀) is not harmonic, the gradient es-
timator for the original WoS described in Eq. (17) does not work
anymore. In the following, we derive the directional derivative
𝜕𝒅𝒗

(𝑀) and develop an unbiased fixed-step WoS estimator for it
(presented in Algorithm 4).

We first take the derivative on both sides of Eq. (20) and apply
the product rule, yielding

𝜕𝒅𝒗
(𝑀) (𝒑) = 𝜕𝒅

(
1
|𝐵𝒑 |

) ∫
𝐵𝒑

𝒗 (𝑀−1) (𝒚) d𝒚︸ ︷︷ ︸
𝐼 (𝑀−1) (𝒑)

+ 1
|𝐵𝒑 |

𝜕𝒅

(∫
𝐵𝒑

𝒗 (𝑀−1) (𝒚) d𝒚
)

︸ ︷︷ ︸
𝜕𝒅 𝐼
(𝑀−1) (𝒑)

.

(22)

The first term on the RHS of Eq. (22) is easier to handle. The de-
rivative of the normalization factor 𝜕𝒅 (1/|𝐵𝒑 |) can be computed
as

𝜕𝒅

(
1
|𝐵𝒑 |

)
= 𝜕𝒅

(
1

𝜋𝐷2

)
= − 2

𝜋𝐷3 𝜕𝒅𝐷 (𝒑), (23)

ALGORITHM 4: Estimating the directional derivative 𝜕𝒅𝒗 (𝑀)

1 EstDerV(𝒑𝐾 , 𝒑𝐾+1, 𝒅 , M)

2 begin
3 𝐷 ← ∥𝒑𝐾 − cp(𝒑𝐾) ∥ ;
4 dInv𝐴← −2

𝜋𝐷3 𝜕𝒅𝐷 ; // Eq. (23)
5 𝒗 ← EstV(𝒑𝐾 , 𝒑𝐾+1, 𝑀) ; // Algorithm 2

6 𝐼 ← |𝐵𝒑 |𝒗;
7 inv𝐴← 1/(𝜋𝐷2) ;
8 d𝐼 ← EstDerI(𝒑𝐾 , 𝒑𝐾+1, 𝒅, 𝑀) ; // Line 11

9 return dInv𝐴 · 𝐼 + inv𝐴 · d𝐼 ; // Eq. (22)
10 end
11 EstDerI (𝒑𝐾 , 𝒑𝐾+1, 𝒅 , M)
12 begin
13 𝒙 ← cp(𝒑𝐾) ;
14 𝐷 ← ∥𝒑𝐾 − 𝒙 ∥ ;
15 𝒛, pdf ← SampleOnCircle(𝒑𝐾 , 𝐷) ;
16 𝒗 ← EstV(𝒛, 𝒑𝐾+1, 𝑀 − 1) ;
17 𝒏𝜕 ← (𝒛 − 𝒑𝐾)/∥𝒛 − 𝒑𝐾 ∥ ;

/* Compute boundary motion vector */

18 𝒈𝐷 ← (𝒑𝐾 − 𝒙)/𝐷 ; // Eq. (25)
19 𝑽 𝜕 ← 𝒅 + (𝒅 · 𝒈𝐷)𝒏𝜕 ; // Eq. (26)
20 return 𝒗 (𝑽 𝜕 · 𝒏𝜕)/pdf ;
21 end

where 𝜕𝒅𝐷 (𝒑) is the directional derivative of the distance field
𝐷 and can be computed via automatic differentiation (Lines 3–4).
The integral 𝐼 (𝑀−1) equals |𝐵𝒑 | 𝒗 (𝑀) by the definition in Eq. (20)
(Lines 5–6).

The second term involves the integral’s directional derivative
𝜕𝒅 𝐼
(𝑀−1) . Since the integration domain 𝐵𝒑 changes along with the

direction 𝒅, we can use the Reynolds transport theorem to rewrite
this derivative as a boundary integral:

𝜕𝒅 𝐼
(𝑀−1) (𝒑) =

∫
𝜕𝐵𝒑

𝒗 (𝑀−1) (𝒛) (𝑽 𝜕𝒅 (𝒛) · 𝒏
𝜕 (𝒛)) d𝒛 . (24)

In this equation, the integration domain becomes a circle 𝜕𝐵𝒑 (bound-
ary of the 2D disk 𝐵𝒑). To estimate this integral, we first sample
a point 𝒛 on the circle (Line 15), compute 𝒗 (𝑀−1) at 𝒛 recursively
(Line 16), and compute the dot product of the (outward) boundary
normal 𝒏(𝒛) = (𝒛 − 𝒑)/∥𝒛 − 𝒑∥ (Line 17) and the boundary motion
vector 𝑽 𝜕

𝒅
(𝒛) (Lines 18–19).

As illustrated in Fig. 5, the boundary motion vector 𝑽 𝜕
𝒅
(𝒛) cap-

tures the motion of the integration domain, which is a circle in this
case, as we perturb its center 𝒑 along the direction 𝒅. Assuming the
circle’s center 𝒑 moves along 𝒅 by a unit magnitude, the motion
at a point 𝒛 on the circle is the composition of the following two
components:
(1) translation in the direction 𝒅 by the same magnitude as the

circle’s center (Fig. 5 (a)), and

(2) translation in the direction 𝒏𝜕 (𝒛) due to the change of the circle’s
radius (Fig. 5 (b)), which is the distance field function 𝐷 (𝒑)
defined in Eq. (14).

The first component is trivial to compute. For the second compo-
nent, the motion direction aligns with 𝒏𝜕 (𝒛), and the translation

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Unbiased Differential Visibility Using Fixed-Step Walk-on-Spherical-Caps And Closest Silhouettes • 9

𝒅

𝒑

(a) Step 1: Translation along d

𝒑

(b) Step 2: Scaling the circle

Fig. 5. The computation of the boundary motion vector 𝑽 𝜕
𝒅
consists of two

steps. Suppose the circle’s center 𝒑 translates along the direction 𝒅 by a
small magnitude. (a) We first translate the entire circle along with its center
by the same direction and magnitude. (b) We then scale the circle so that it
is still tangential to the boundary.

magnitude (𝒅 · 𝒈𝐷) is the change rate of the distance field 𝐷 with
respect to 𝒅, where

𝒈𝐷 =
𝒑 − cp(𝒑)
∥𝒑 − cp(𝒑)∥ (25)

denotes the gradient vector of the distance field at 𝒑. To sum up,
the boundary motion vector is computed as

𝑽 𝜕𝒅 (𝒛) = 𝒅 + (𝒅 · 𝒈𝐷)𝒏𝜕 (𝒛) . (26)

Putting these equations together, the final result of the directional
derivative is

𝜕𝒅𝒗
(𝑀) (𝒑) = − 2

𝐷
𝜕𝒅𝐷 (𝒑) · 𝒗 (𝑀) (𝒑)

+ 1
𝜋𝐷2

∫
𝜕𝐵𝒑

𝒗 (𝑀−1) (𝒛)
(
𝒅 · (𝒈𝐷 + 𝒏𝜕 (𝒛))

)
d𝒛 .

(27)

In the top row of Fig. 8, we verify the correctness of our fixed-step
WoS derivative estimator by comparing its results with references
generated by finite differences.

6 Practical Differential Visibility in 3D Using
Walk-on-Spherical-Caps And Closest Silhouettes

We have constructed a valid velocity field 𝒗 (𝑀) using fixed-step
WoS. Unfortunately, this method is not immediately practical for
computing differential visibility, because the closest point queries
cp(·) in the WoS process is expensive to compute.
In this section, we present a practical algorithm to address this

challenge. We first introduce an algorithm to find the closest sil-
houettes given a path segment, which takes sub-linear time and
effectively finds the closest points under the geodesic (angular) met-
ric on a unit sphere (§6.1). With this efficient closest silhouette
query, we can construct a valid velocity field 𝒖 (𝑀) on the spherical
surface S2 using fixed-step walk-on-spherical-caps estimators (§6.2);
in this case, random walks live on the spherical surface and jump
between spherical caps, which are the intersections between cones
and the unit sphere, instead of 2D circles (see Fig. 6). Lastly, our final
warped-area reparameterization algorithm uses fixed-step WoSC
estimators to compute 𝒖 (𝑀) and its directional derivatives 𝜕𝒅𝒖 (𝑀)
on the spherical surface.

𝒑

𝒑𝐾+1
�̂�1

�̂�1
𝒒

Fig. 6. Illustration of fixed-step walk-on-spherical-caps (WoSC) with𝑀 = 1.
A random walk starts at 𝑏𝑞, jumps to �̂�1 inside a spherical cap (the blue
region), which is the intersection between a cone and the unit sphere, and
ends by grabbing the boundary value at �̂�1.

𝒑𝐾

𝒙

𝒑𝐾+1

Fig. 7. We define a spherical projection from the tangent plane at 𝒑𝐾 to
the unit sphere centered at the shading point 𝒑𝐾+1 (here only shows a
hemisphere). Our new geodesic closest point function cpS2 find the closest
silhouette point 𝒙 on the triangle occluder, which effectively minimizes the
geodesic distance between its spherical projection and the boundary arcs
on the spherical surface.

6.1 Finding Closest Silhouette Points
Our fixed-step WoS estimators will become practical as long as
we can efficiently find the closest points on the boundaries. In the
following, we present an efficient algorithm to find the closest sil-
houette points on edges, which effectively finds the closest points
minimizing the geodesic (angular) distance on a unit sphere. Having
the ability of finding closest points on the spherical surface, we
propose a practical algorithm called walk-on-spherical-caps in the
next subsection, which is a variant of WoS running on the spherical
surface rather than flat surfaces.

Spherical projection. As illustrated in Fig. 7, given a path segment
𝒑𝐾𝒑𝐾+1, we project the endpoint 𝒑𝐾 and the boundary curves in
𝜕Bwa (e.g., the visibility boundaries with red color in Fig. 7) to a
unit sphere centered at the shading point 𝒐 := 𝒑𝐾+1. After this
spherical projection, a point 𝒑 on the surface becomes a point 𝒒 =

(𝒑−𝒐)/∥𝒑−𝒐∥ on the unit sphere, and the boundary curves become
a set of spherical arcs 𝜕Bwa

S2 (𝒐) on S2 (the blue spherical triangle

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Wu et al.

and the gray spherical rectangle in Fig. 7). The boundary velocities
on the projected spherical arcs are inherited from 𝒗𝜕 defined on
surfaces:

𝒖𝜕 ((𝒑 − 𝒐)/∥𝒑 − 𝒐∥) := 𝒗𝜕 (𝒑) , for all𝒑 ∈ 𝜕Bwa . (28)

In this case, finding the closest point between 𝒒 and the projected
spherical arcs 𝜕Bwa

S2 (𝒐) is actually minimizing the geodesic (angular)
distance on the unit sphere, instead of the Euclidean distance on a
flat surface. Specifically, the closest point function on the spherical
surface is defined as

cpS2 (𝒒; 𝒐) = argmax
𝒒′∈𝜕Bwa

S2 (𝒐)
(𝒒 · 𝒒′) . (29)

Note that minimizing the geodesic distance is equivalent to maxi-
mizing the dot product between two unit vectors on the sphere.
Because all the spherical arcs are projected from the edges of

object surfaces in the scene (e.g., the blue triangle occluder in Fig. 7),
the geodesic closest point function can be rewritten as

cpS2 (𝒒; 𝒐) = argmax
𝒙∈𝐸

(𝒒 · 𝒙 − 𝒐
∥𝒙 − 𝒐∥) , (30)

where 𝐸 is the set of surface edges that are visible to 𝒐.

Closest silhouette point queries. The geodesic closest point func-
tion defined in Eq. (30) has a geometric interpretation. Given a
cone that originates at 𝒐 and has a central direction 𝒒, the function
cpS2 (𝒒; 𝒐) finds its minimum half-angle such that the cone inter-
sects (in fact it is tangential to) scene objects. Inspired by this, we
propose an efficient algorithm accelerated by a spatial hierarchy to
compute cpS2 (𝒒; 𝒐), which is described in Algorithm 5.

We initialize a cone with the specified origin, direction, and half-
angle as input, and start traversing the hierarchy from the root node.
At each node, we check whether the cone intersects the bound-
ing box of its child nodes (Line 13) and continue the traversal if
so (Line 14). Upon reaching a leaf node, we compute the geodesic
closest point function from all the triangle edges in the leaf node
based on Eq. (30) (Line 5), and then update the result accordingly
(Lines 6–8). Thanks to the accelerating spatial hierarchy, this al-
gorithm takes sub-linear time in terms of the number of triangles,
making it practical for complex 3D scenes.

Accelerating spatial hierarchy. In theory, our method does not
require any additional accelerating spatial hierarchy since we can
reuse the existing BVH for ray tracing. In practice, because this
BVH cannot be accessed beyond hardware accelerated (RTX) ray
intersection, we cannot easily repurpose it for our closest silhou-
ette cone queries. Instead, we use a binary BVH constructed by the
fcpw library [Sawhney 2021], which is a software implementation
in Slang, still running on the GPU, but without any hardware accel-
eration. Our BVH uses a CPU-parallel construction that is relatively
unoptimized compared to the most recent GPU-based BVH construc-
tion algorithms. For example, BVH construction for the scene in
Fig. 1 takes about 100 milliseconds, and computing one million cone
queries via BVH traversal on the GPU takes about 20 milliseconds.
Developing an optimized BVH construction and traversal algorithm
for our cone queries is an interesting topic for future work.

ALGORITHM 5: Computing the geodesic closest point on S2.

1 CPOnSphere(𝒒, 𝒐, node, minHalfAngle)
2 begin
3 cp← ∅ ; // Initialization

4 if node is a leaf node then
5 Compute the geodesic closest point 𝒙 and its corresponding

half-angle 𝑎 from all edges inside the node ; // Eq. (30)
/* Update cp with a smaller half-angle */

6 if 𝑎 < minHalfAngle then
7 cp← 𝒙 ; minHalfAngle← 𝑎;
8 end
9 end

10 else
11 for child ∈ {node.left, node.right} do
12 bbox← bounding box of child;
13 if bbox intersects the cone with minHalfAngle then

/* Traverse the subtree */

14 𝒙, 𝑎 ← CPOnSphere(𝒒, 𝒐, child,minHalfAngle) ;
/* Update cp with a smaller half-angle */

15 if 𝑎 < minHalfAngle then
16 cp← 𝒙 ; minHalfAngle← 𝑎;
17 end
18 end
19 end
20 end
21 return cp,minHalfAngle;
22 end

To speed up the BVH traversal, we use the following heuristics.
First, we set the initial half-angle of the cone to be the angle sub-
tended by the hit triangle that 𝒑𝐾 lies on. Tuning the size of the
initial half-angle offers a trade-off between the speed of the traversal
and the smoothness of the constructed velocity field, and finding
the optimal value is left as future work. Second, we use a back-face
culling heuristic that terminates the traversal if the bounding box
of the current node is completely behind the tangent plane at 𝒑𝐾 .

6.2 Fixed-Step Walk-on-Spherical-Caps: From Flat to
Spherical Surfaces

Equipped with the efficient closest silhouette queries, we can now
construct a valid velocity field 𝒖 (𝑀) on the spherical surface, en-
abling a practical warped-area reparameterization algorithm for 3D
differential visibility. In a high level, our final warped-area reparam-
eterization algorithm consists of two steps.
(1) We construct 𝒖 (𝑀) on the spherical surface with the fixed-step

walk-on-spherical-caps algorithm. Our fixed-step WoSC estima-
tor is very similar to the WoS variant described in Algorithm 2,
except that we use the geodesic closest point function cpS2 rather
than the Euclidean closest point function cp.

(2) A valid velocity field 𝒖 (𝑀) on the spherical surface induces a
valid 𝒗 on the flat surface (i.e., Bwa that 𝒑𝐾 lies on). We can get
𝒗 and 𝜕𝒅𝒗 for warped-area reparameterization by computing
𝒖 (𝑀) and 𝜕𝒅𝒖 (𝑀) on the spherical surface.

We discuss each of them as follows.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Unbiased Differential Visibility Using Fixed-Step Walk-on-Spherical-Caps And Closest Silhouettes • 11

ALGORITHM 6: Estimating the velocity 𝒖 (𝑀) on S2

1 EstU(𝒒, 𝒐,𝑀)

2 begin
/* Find the geodesic closest point on spherical

boundaries using Algorithm 5 */

3 𝒛,minHalfAngle← CPOnSphere(𝒒, 𝒐, root, initialHalfAngle) ;
/* Terminate if reaching the maximum step */

4 if 𝑀 = 0 then
5 𝒖 ← 𝒖𝜕 (𝒛) ;
6 end
7 else
8 𝒚, pdf ← SampleInsideSphericalCap(𝒒, 𝒐,minHalfAngle) ;
9 area← 2𝜋 (1 − cos(minHalfAngle)) ; // Eq. (33)

10 𝒖 ← EstU(𝒚, 𝒐, 𝑀 − 1)/(pdf · area) ;
11 end
12 return 𝒖;
13 end

Constructing 𝒖 (𝑀) using fixed-stepWoSC. The formulation of 𝒖 (𝑀)
on the spherical surface is very similar to its variant 𝒗 (𝑀) on the flat
surface (Eqs. (18, 20)), except that we use cpS2 rather than cp and
the integration domain is a spherical cap 𝐶𝒒 rather than a disk 𝐵𝒑 .
Suppose 𝒐 := 𝒑𝐾+1 is the fixed shading point and the center of

the unit sphere. Starting from𝑀 = 0, we have

𝒖 (0) (𝒒) = 𝒖𝜕 (cpS2 (𝒒; 𝒐)) . (31)

For 𝑀 > 0, 𝒖 (𝑀) is defined recursively by averaging 𝒖 (𝑀−1) over
the maximum inner spherical cap 𝐶𝒒 (the blue region in Fig. 6):

𝒖 (𝑀) (𝒒) = 1
|𝐶𝒒 |

∫
𝐶𝒒

𝒖 (𝑀−1) (𝒚) d𝒚 , (32)

where 𝐶𝒒 is the maximum inner spherical cap with the central
direction 𝒒 and the half-angle𝐴(𝒒) (i.e., the geodesic closest distance
between 𝒒 and the spherical boundaries), and |𝐶𝒒 | denotes its area:

|𝐶𝒒 | = 2𝜋 (1 − cos𝐴(𝒒)) . (33)

Because 𝒗 (𝑀) and 𝒖 (𝑀) have almost identical formulations, 𝒖 (𝑀)
inherits the properties of 𝒗 (𝑀) : it satisfies the continuity and bound-
ary consistency requirements on the spherical surface. We illustrate
the fixed-stepWoSC algorithm in Fig. 6 and outline it in Algorithm 6.
The major differences compared with its WoS variant in Algorithm 2
are highlighted in orange color (Lines 3 and 8).

Computing directional derivatives 𝜕𝒅𝒖 (𝑀) . We present the final
result of the directional derivative 𝜕𝒅𝒖 (𝑀) (𝒒) with respect to a di-
rection 𝒅 on the tangent plane at 𝒒:

𝜕𝒅𝒖
(𝑀) (𝒒) = − sin𝐴

1 − cos𝐴
𝜕𝒅𝐴(𝒒) · 𝒖 (𝑀) (𝒒)

+ 1
|𝐶𝒒 |

∫
𝜕𝐶𝒒

𝒖 (𝑀−1) (𝒛)
(
�̂�
𝜕

𝒅 (𝒛) · �̂�𝜕 (𝒛)
)

d𝒛 ,
(34)

where𝐴(·) is the geodesic (angular) distance field on the unit sphere
and �̂�𝜕 (𝒛) is the projected (outward) normal vector of the spherical
cap boundary onto the tangent plane at 𝒛. The projected boundary

motion vector �̂� 𝜕𝒅 (𝒛) onto the tangent plane at 𝒛 is written as

�̂�
𝜕

𝒅 (𝒛) = 𝑽 𝜕𝒅 (𝒛) −
(
𝑽 𝜕𝒅 (𝒛) · 𝒛

)
𝒛 , and

𝑽 𝜕𝒅 (𝒛) =
(

𝒒 × 𝒅
∥𝒒 × 𝒅∥ × 𝒛

)
+

(
𝒅 · 𝒈𝐴

)
�̂�𝜕 (𝒛) ,

(35)

where × represents cross product and 𝒈𝐴 is the gradient of the
geodesic distance field 𝐴(·) on the unit sphere.
Similar to the derivation in §4, the boundary motion vector is

decomposed into two components. The first component is slightly
different; the translation on flat surfaces becomes a rotation on the
spherical surface, and the cross product term denotes the angular
velocity of this rotation. The second component is similar, capturing
the change of a spherical cap’s size.
In the bottom row of Fig. 8, we validate the spherical version of

our directional derivative estimator in Eq. (34).

Reparameterization with 𝒖 (𝑀) and 𝜕𝒅𝒖 (𝑀) . We now present our
final warped-area reparameterization algorithm using fixed-step
WoSC estimators. It is outlined in Algorithm 7, and we highlight
the major differences compared with its WoS variant (Algorithm 3)
in orange color (Lines 4, 8, and 9).
Our constructed field 𝒖 (𝑀) on the spherical surface induces a

valid velocity field 𝒗 on the flat surface:

𝒗 (𝒑) := 𝒖 (𝑀) (𝒒) , (36)

where 𝒒 = (𝒑 − 𝒑𝐾+1)/∥𝒑 − 𝒑𝐾+1∥ is the spherical projection of
𝒑. So the velocity 𝒗 can be estimated using our fixed-step WoSC
estimator (Line 4).

Furthermore, the directional derivative 𝜕𝒅𝒗 (𝒑) with respect to a
direction 𝒅 on the surface equals the directional derivative 𝜕�̂�𝒖

(𝑀) (𝒒)
with respect to the projection of 𝒅 on the tangent plane at 𝒒:

�̂� =
𝒅

∥𝒑 − 𝒑𝐾+1∥
−

(
𝒅

∥𝒑 − 𝒑𝐾+1∥
· 𝒒

)
𝒒 . (37)

We show the proof of

𝜕𝒅𝒗 (𝒑) = 𝜕�̂�𝒖
(𝑀) (𝒒) (38)

in Appendix B. As a result, we can estimate the divergence ∇ · 𝒗
using our fixed-step WoSC estimator (Lines 8 and 9). This concludes
our final warped-area reparameterization algorithm.
In Fig. 9, we validate our final warped-area reparameterization

algorithm by comparing the differentiable rendering results with
reference images computed by finite differences.

7 Results
We implement our method on the GPU using the Falcor rendering
system [Kallweit et al. 2022] and the Slang shading language [Ban-
garu et al. 2023]. All the experiments are run on a single NVIDIA
RTX 4090 GPU.

7.1 Validation
Directional derivative estimators. We first validate our directional

derivative estimators in Eqs. (27) and (34) as a unit test. In the top
row of Fig. 8, we define a 2D boundary value problem on a flat plane
and provide the boundary shape (the blue polygon) and boundary
values as input. We then use 1-step WoS to compute 𝒗 (1) and its
directional derivative 𝜕𝒅𝒗 (1) with respect to a pre-determined vector

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12 • Wu et al.

ALGORITHM 7: Computing the velocity 𝒗 and its divergence ∇ · 𝒗.
1 ComputeV(𝒑𝐾 , 𝒑𝐾+1)

2 begin
3 𝒒← (𝒑𝐾 − 𝒑𝐾+1)/∥𝒑𝐾 − 𝒑𝐾+1 ∥ ;

/* Estimate the velocity 𝒗 */

4 𝒗 ← EstU(𝒒, 𝒑𝐾+1, 𝑀) ; // Algorithm 6

/* Estimate the divergence ∇ · 𝒗 */

5 ∇ · 𝒗 ← 0;
6 Specify a pair of orthogonal unit vectors 𝒔 and 𝒕 on the surface

where 𝒑𝐾 resides;
7 for 𝒅 ∈ {𝒔, 𝒕 } do
8 �̂� ← Project(𝒑𝐾 , 𝒑𝐾+1, 𝒅) ; // Line 14

9 𝜕�̂�𝒗 ← EstDerU(𝒒, 𝒑𝐾+1, �̂�, 𝑀) ; // Eq. (34)
10 ∇ · 𝒗 ← ∇ · 𝒗 + (𝜕�̂�𝒗 · 𝒅) ;
11 end
12 return 𝒗, ∇ · 𝒗;
13 end
14 Project(𝒑, 𝒐, 𝒅)
15 begin
16 ℓ ← ∥𝒑 − 𝒐 ∥ ;
17 𝒒← (𝒑 − 𝒐)/ℓ ;
18 �̂� ← 𝒅/ℓ − ((𝒅/ℓ) · 𝒒)𝒒 ; // Eq. (37)
19 return �̂�;
20 end

(a) 𝒗 (1) (b) 𝜕𝒅𝒗 (1) (c) FD ref.

Fig. 8. Validation of our directional derivative estimators on flat surfaces
(top row) and spherical surfaces (bottom row; visualized by projecting the
hemisphere onto a disk). (a) Given values at the boundaries (shown in blue
segments) as input, we compute the interior values using our fixed-step
estimators with𝑀 = 1. The estimated derivatives with respect to a direction
𝒅 in (b) using Eqs. (27) and (34) match the references in (c) computed by
finite differences.

𝒅 inside the polygon (shown in Fig. 8 (a) and (b) respectively). We
compare the derivative estimates to the reference values computed
by finite differences (FD) in Fig. 8 (c). In the bottom row, we repeat

(a) Primal (b) FD ref. (c) Ours (high spp)

(d) WAS (e) PSDR-WAS (f) Ours

Fig. 9. In this example, we compute derivatives with respect to the 𝑥-
translation of the center box. We first validate our warped-area reparameter-
ization algorithm by comparing our result in (c) with the reference gradient
image computed by finite differences in (b). In (d)–(f), we show equal-sample
comparisons with the baseline methods, WAS [Bangaru et al. 2020] and
PSDR-WAS [Xu et al. 2023].

a similar validation on a unit hemisphere using 1-step walk-on-
spherical-caps, where the boundary shape is a spherical triangle
now.

Gradient images. With the directional derivatives validated, we
now validate our final warped-area reparameterization algorithm
by comparing the gradient images computed using our method to
the reference images computed using finite differences.
The example in Fig. 9 (a)–(c) computes image derivatives with

respect to the 𝑥-translation of the center box. The gradient image
computed by our method (c) closely matches the FD reference (b).

7.2 Evaluation
Ablation: number of WoSC steps. The number of WoSC steps𝑀 is

the most important hyperparameter in our method. Although using
more steps lead to smoother velocity fields, it comes with a higher
computational cost, mainly due to a higher required number of cone
queries. The number of cone queries, and thus the running time of
our algorithm, scales linearly in the step count𝑀 . In practice, we
do not observe significant benefits from using more than one step.
In Fig. 10, we show an equal-time comparison using 𝑀 = 1, 2,

and 4, which uses 1000, 480, and 310 primary samples per pixel,
respectively. Each primary sample simulates one auxiliary WoSC
random walk. This example (also shown in Fig. 1) computes deriva-
tives of the shadows cast by the Voronoi-bunny model [Mehta et al.
2022] with 168k triangles under an area light source, with respect
to the 𝑦-translation of the bunny. Using different numbers of steps,
the mean L1 errors of the gradient images compared with the FD
reference image are 0.017, 0.028, and 0.041, respectively. When the
cone queries become more efficient in the future, using more steps
may be potentially beneficial.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Unbiased Differential Visibility Using Fixed-Step Walk-on-Spherical-Caps And Closest Silhouettes • 13

(a) Primal (b) FD ref. (c)𝑀 = 1 (d)𝑀 = 2 (e)𝑀 = 4
Mean L1 error: 0.017 0.028 0.041

Fig. 10. An equal-time ablation study on the number of WoSC steps𝑀 . In practice, we do not observe significant benefits from using more than one step, due
to the linearly increasing computational cost.

(a) Configuration (b) Shadow view (c) FD ref. (d) Ours (e) Projective sampling

Fig. 11. Comparison with projective sampling [Zhang et al. 2023]. The example on the top row computes derivatives of the shadows cast by the Voronoi-bunny
model, and the example on the bottom row computes derivatives of the shadows seen through a mirror. Our results closely match the FD reference images,
showing the robustness of our method under complicated light transport configurations. On the other hand, the results of projective sampling deviate from
the reference images.

Baselines. We compare our method to two state-of-the-art base-
lines in warped-area reparameterization: the warped-area sampling
method by Bangaru et al. [2020] (denoted as WAS) and the path-
space warped-area sampling method by Xu et al. [2023] (denoted
as PSDR-WAS). For WAS, we use its public implementation in the
Falcor renderer [Kallweit et al. 2022]. For PSDR-WAS, we use the
code released by the authors, which uses the Enzyme automatic
differentiation framework [Moses and Churavy 2020] and runs on
the CPU.

Equal-sample gradient image comparison. Since our method and
the baselines run in different environments, it is hard to do equal-
time comparisons, so we perform equal-sample comparisons instead.
To shed light on the practicality of our method, we compare the
performance of our cone queries (Algorithm 5) using the following
experiment. We implement the cone query in the Slang shading
language, port it to the open-source fcpw library [Sawhney 2021],
and compare its performance to the (shadow) ray intersection query
in fcpw. Using a Stanford dragon model with 100k triangles, it takes
roughly 30ms for our method to answer 1M cone queries, which is
about 10× slower than performing 1M ray intersection queries.
We compare the gradient image renderings to baseline methods

(WAS [Bangaru et al. 2020] and PSDR-WAS [Xu et al. 2023]). Both
baselines use 8 auxiliary samples to compute the velocities in Eq. 7

for warped-area parameterization, and all methods use the same
number of primary samples per pixel.

As shown in Fig. 1, our method outperforms the baselines in the
equal-sample comparison because of the robust velocity construc-
tion strategy. From Fig. 1 (b)–(d), the mean L1 errors compared to the
FD reference image are 0.032, 0.053, and 0.069, respectively. Using
a high sample count (Fig. 1 (a)), our result converges closely to the
reference.

In Fig. 9 (d)–(f), we show another equal-sample comparison. Our
result has lower noise level compared to both baselines.

Comparison with explicit boundary sampling. In Fig. 11, we demon-
strate two examples of our method compared with the state-of-the-
art explicit boundary sampling technique, projective sampling [Zhang
et al. 2023]. We use the authors’ public implementation in Mitsuba
3 [Jakob et al. 2022b], and both methods use a high sample count to
produce converged gradient images.
In the first example (top row of Fig. 11) of the Voronoi-bunny

scene, the gradient image computed by our method closely matches
the FD reference image, while the projective sampling result deviates
from the reference and has obvious artifacts on the top-right region.
The reason might be that the projection is not always well-behaved
when building the guiding structure for the Voronoi-bunny model

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14 • Wu et al.

with many thin geometric structures, which is referred to as the
difficult “blade-of-grass” case in their paper.
The second example (bottom row of Fig. 11) computes deriva-

tives of the shadows cast by the Voronoi-sphere model [Mehta et al.
2022] with 72k triangles seen through a mirror, with respect to
the 𝑥-translation of the Voronoi-sphere. Our result matches the FD
reference image closely, showing the robustness of our method un-
der complicated light transport configurations. On the other hand,
projective sampling fails to capture the mirrored shadows since its
guiding structure cannot be built due to the direct specular con-
nection to the pinhole camera, which might be addressed by the
specular manifold sampling techniques [Zeltner et al. 2020].

Inverse rendering comparison. In Fig. 12, we demonstrate an in-
verse rendering example optimizing the occluder’s shape (i.e., mesh
vertex positions) by only looking at its shadows. This example in-
volves 50 unknown variables. Starting from a disk, we can converge
to the target flower shape. On the other hand, the baseline method
fails to converge to the optimal solution due to its inaccurate gradi-
ent estimates.

8 Conclusion
In this work, we introduced a fixed-step walk-on-spherical-caps
algorithm for differentiable rendering, which constructs a velocity
field that respects the constraints needed for unbiased warped-area
reparameterization. Our method makes non-trivial modifications to
the walk on spheres algorithm, namely, adapting it from Euclidean
to spherical domains, providing principled derivative estimation
for our fixed-step implementation, and developing a cone query
that is scalable to complex 3D scenes. Our resulting velocity fields
provide higher quality derivatives compared to prior warped area
reparameterization approaches, both in terms of bias and variance,
enabling more robust differentiable rendering. Future work involves
further optimizing our cone query on the GPU, as well as exploration
of recent manifold-based WoS approaches [Sugimoto et al. 2024] to
our setting.

Acknowledgments
We thank the anonymous reviewers for their constructive sugges-
tions. We are grateful to Steve Marschner, Wenzel Jakob, Jacob
Munkberg, and Jon Hasselgren for their insightful discussions and
feedback on the paper. We also thank Peiyu Xu for his help with
the 3D scenes and the comparison to PSDR-WAS.

References
Sai Bangaru, Michael Gharbi, Tzu-Mao Li, Fujun Luan, Kalyan Sunkavalli, Milos Hasan,

Sai Bi, Zexiang Xu, Gilbert Bernstein, and Fredo Durand. 2022. Differentiable
Rendering of Neural SDFs through Reparameterization. In ACM SIGGRAPH Asia
2022 Conference Proceedings (SIGGRAPH Asia ’22). Article 22, 9 pages.

Sai Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein, Jonathan
Ragan-Kelley, Fredo Durand, Aaron Lefohn, and Yong He. 2023. SLANG.D: Fast,
Modular and Differentiable Shader Programming. ACM Trans. Graph. 42, 6 (2023),
1–28.

Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area
Sampling for Differentiable Rendering. ACMTrans. Graph. 39, 6 (2020), 245:1–245:18.

Yash Belhe, Bing Xu, Sai Praveen Bangaru, Ravi Ramamoorthi, and Tzu-Mao Li. 2024.
Importance Sampling BRDF Derivatives. ACM Trans. Graph. 43, 3, Article 25 (2024),
21 pages.

Ilia Binder and Mark Braverman. 2012. The rate of convergence of the walk on spheres
algorithm. Geometric and Functional Analysis 22, 3 (2012), 558–587.

Wesley Chang, Venkataram Sivaram, Derek Nowrouzezahrai, Toshiya Hachisuka, Ravi
Ramamoorthi, and Tzu-Mao Li. 2023. Parameter-space ReSTIR for Differentiable
and Inverse Rendering. In ACM SIGGRAPH 2023 Conference Proceedings (SIGGRAPH
’23). Association for Computing Machinery, New York, NY, USA, 18:1–18:10.

Gísli R. Hjaltason and Hanan Samet. 1999. Distance browsing in spatial databases. ACM
Trans. Database Syst. 24, 2 (1999), 265–318.

J. Jakob and M. Guthe. 2021. Optimizing LBVH-Construction and Hierarchy-Traversal
to accelerate kNN Queries on Point Clouds using the GPU. Computer Graphics
Forum 40, 1 (2021), 124–137.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,
Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang.
2022b. Mitsuba 3 renderer. https://mitsuba-renderer.org.

Wenzel Jakob, SÃ©bastien Speierer, Nicolas Roussel, and Delio Vicini. 2022a. Dr.Jit: A
Just-In-Time Compiler for Differentiable Rendering. ACM Trans. Graph. 41, 4 (2022),
124:1–124:19.

David E. Johnson and Elaine Cohen. 2001. Spatialized normal come hierarchies. In
Proceedings of the 2001 Symposium on Interactive 3D Graphics (I3D ’01). 129–134.

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’aš Davidovič, Kai-Hwa Yao, Theresa
Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman, Cyril
Crassin, and Nir Benty. 2022. The Falcor Rendering Framework. https://github.
com/NVIDIAGameWorks/Falcor

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering.
ACM Trans. Graph. 39, 6 (2020).

Pedro Jose Silva Leite, Joao Marcelo Xavier Natario Teixeira, Thiago Souto
Maior Cordeiro de Farias, Veronica Teichrieb, and Judith Kelner. 2009. Massively Par-
allel Nearest Neighbor Queries for Dynamic Point Clouds on the GPU. In 2009 21st
International Symposium on Computer Architecture and High Performance Computing.
19–25.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable
Monte Carlo ray tracing through edge sampling. ACM Trans. Graph. 37, 6 (2018),
222:1–222:11.

Zilu Li, Guandao Yang, Xi Deng, Christopher De Sa, Bharath Hariharan, and Steve
Marschner. 2023. Neural Caches for Monte Carlo Partial Differential Equation
Solvers. In SIGGRAPH Asia 2023 Conference Papers. 1–10.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differentiable
Renderer for Image-based 3D Reasoning. The IEEE International Conference on
Computer Vision (ICCV) (Oct 2019).

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing
discontinuous integrands for differentiable rendering. ACM Transactions on Graphics
(TOG) 38, 6 (2019), 1–14.

Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. 2021. Unified Shape and
SVBRDF Recovery using Differentiable Monte Carlo Rendering. Computer Graphics
Forum 40, 4 (2021), 101–113.

Don McLeish. 2011. A general method for debiasing a Monte Carlo estimator. Monte
Carlo methods and applications 17, 4 (2011), 301–315.

Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. 2022. A level set theory for
neural implicit evolution under explicit flows. In European Conference on Computer
Vision. 711–729.

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary
Value Caching for Walk on Spheres. ACM Trans. Graph. 42, 4 (2023), 1–11.

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2024a. Differen-
tial Walk on Spheres. ACM Trans. Graph. 43, 6 (2024), 1–18.

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2024b.
Walkin’robin: Walk on stars with robin boundary conditions. ACM Trans. Graph.
43, 4 (2024), 1–18.

William Moses and Valentin Churavy. 2020. Instead of rewriting foreign code for
machine learning, automatically synthesize fast gradients. Advances in neural
information processing systems 33 (2020), 12472–12485.

Mervin EMuller. 1956. Some continuousMonte Carlomethods for the Dirichlet problem.
The Annals of Mathematical Statistics (1956), 569–589.

Mohammad Sina Nabizadeh, Ravi Ramamoorthi, and Albert Chern. 2021. Kelvin
transformations for simulations on infinite domains. ACM Trans. Graph. 40, 4 (2021),
97:1–97:15.

Baptiste Nicolet, Fabrice Rousselle, Jan Novák, Alexander Keller, Wenzel Jakob, and
Thomas Müller. 2023. Recursive Control Variates for Inverse Rendering. ACM Trans.
Graph. 42, 4 (2023).

Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, andWenzel Jakob. 2020. Radiative
backpropagation: an adjoint method for lightning-fast differentiable rendering. ACM
Trans. Graph. 39, 4 (2020), 146:1–146:15.

Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and Pat
Hanrahan. 2003. Photon Mapping on Programmable Graphics Hardware. In Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware.
41–50.

Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A bidirectional
formulation for Walk on Spheres. Computer Graphics Forum 41, 4 (2022), 51–62.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor

Unbiased Differential Visibility Using Fixed-Step Walk-on-Spherical-Caps And Closest Silhouettes • 15

(a) Configuration (b) Initial (c) Ours (d) Loss

Fig. 12. We present an inverse rendering example that optimizes the occluder’s shape by only looking at shadows. The target shape is shown in (a). Starting
from an initial shape in (b), our method can converge to the desired shape in (c). We compare the convergence rates between our method and the baseline
method [Bangaru et al. 2020] in (d).

Maxime Roger, Stéphane Blanco, Mouna El Hafi, and Richard Fournier. 2005. Monte
Carlo estimates of domain-deformation sensitivities. Physical review letters 95, 18
(2005), 180601.

Hanan Samet. 2005. Foundations of Multidimensional and Metric Data Structures (The
Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan
Kaufmann Publishers Inc.

Rohan Sawhney. 2021. FCPW: Fastest Closest Points in the West.
Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing: a grid-free

approach to PDE-based methods on volumetric domains. ACM Trans. Graph. 39, 4
(2020), 123:1–123:18.

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk
on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary
Conditions. ACM Trans. Graph. (2023).

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-free Monte
Carlo for PDEs with spatially varying coefficients. ACM Trans. Graph. 41, 4 (July
2022).

Johannes Schauer, Janusz Bedkowski, Karol Majek, and Andreas Nüchter. 2016. Perfor-
mance comparison between state-of-the-art point-cloud based collision detection
approaches on the CPU and GPU. IFAC 49, 30 (2016), 54–59.

Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka.
2023. A Practical Walk-on-Boundary Method for Boundary Value Problems. ACM
Trans. Graph. 42, 4, Article 81 (July 2023), 16 pages.

Ryusuke Sugimoto, Nathan King, Toshiya Hachisuka, and Christopher Batty. 2024.
Projected Walk on Spheres: A Monte Carlo Closest Point Method for Surface PDEs.
In SIGGRAPH Asia 2024 Conference Papers. 1–10.

Xiaochun Tong, Hsueh-Ti Derek Liu, Yotam Gingold, and Alec Jacobson. 2023. Differ-
entiable Heightfield Path Tracing with Accelerated Discontinuities. In SIGGRAPH
2023 Conference Proceedings (SIGGRAPH ’23).

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Vol. 1610.
Stanford University PhD thesis.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path Replay Backpropagation:
Differentiating Light Paths Using Constant Memory and Linear Time. ACM Trans.
Graph. 40, 4, Article 108 (2021), 108:1–108:14 pages.

Delio Vicini, SÃ©bastien Speierer, and Wenzel Jakob. 2022. Differentiable Signed
Distance Function Rendering. ACM Trans. Graph. 41, 4 (2022), 125:1–125:18.

Yu-Chen Wang, Chris Wyman, Lifan Wu, and Shuang Zhao. 2023. Amortizing Samples
in Physics-Based Inverse Rendering Using ReSTIR. ACM Trans. Graph. 42, 6 (2023),
214:1–214:17.

Zichen Wang, Xi Deng, Ziyi Zhang, Wenzel Jakob, and Steve Marschner. 2024. A
Simple Approach to Differentiable Rendering of SDFs. In ACM SIGGRAPH Asia 2024
Conference Proceedings.

Peiyu Xu, Sai Bangaru, Tzu-Mao Li, and Shuang Zhao. 2023. Warped-Area Reparameter-
ization of Differential Path Integrals. ACM Trans. Graph. 42, 6 (2023), 213:1–213:18.

Kai Yan, Christoph Lassner, Brian Budge, Zhao Dong, and Shuang Zhao. 2022. Efficient
estimation of boundary integrals for path-space differentiable rendering. ACM
Trans. Graph. 41, 4 (2022), 123:1–123:13.

Yuting Yang, Connelly Barnes, Andrew Adams, and Adam Finkelstein. 2022. A 𝛿 :
autodiff for discontinuous programs-applied to shaders. ACM Trans. Graph. 41, 4
(2022), 1–24.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of
neural implicit surfaces. In Thirty-Fifth Conference on Neural Information Processing
Systems.

Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob. 2024. Solving Inverse PDE
Problems using Monte Carlo Estimators. ACM Trans. Graph. 43 (2024).

Z. Yu, L. Wu, Z. Zhou, and S. Zhao. 2024. A Differential Monte Carlo Solver For the
Poisson Equation. In ACM SIGGRAPH 2024 Conference Proceedings.

Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. 2020. Specular Manifold Sampling
for Rendering High-Frequency Caustics and Glints. ACM Trans. Graph. 39, 4 (2020).

Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. Monte
Carlo estimators for differential light transport. ACM Trans. Graph. 40, 4 (2021),
78:1–78:16.

Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. 2021a. Antithetic
sampling for Monte Carlo differentiable rendering. ACM Trans. Graph. 40, 4 (2021),
77:1–77:12.

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.
Path-space differentiable rendering. ACM Trans. Graph. 39, 4 (2020), 143:1–143:19.

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and
Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Trans. Graph.
38, 6 (2019), 227:1–227:16.

Cheng Zhang, Zihan Yu, and Shuang Zhao. 2021b. Path-space differentiable rendering
of participating media. ACM Trans. Graph. 40, 4 (2021), 76:1–76:15.

Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. 2022. IRON: Inverse Rendering
by Optimizing Neural SDFs and Materials from Photometric Images. In IEEE Conf.
Comput. Vis. Pattern Recog.

Ziyi Zhang, Nicolas Roussel, and Wenzel Jakob. 2023. Projective Sampling for Differen-
tiable Rendering of Geometry. ACM Trans. Graph. 42, 6 (2023), 212:1–212:14.

A Proof of 𝒗 (1) ∈ 𝑪0

We apply a change of variable

𝒚(𝒙 ;𝒑) = 𝒑 + 𝐷 (𝒑)𝒙 (39)

to map from 𝒙 in a unit disk �̂� to 𝒚 ∈ 𝐵𝒑 bijectively and in an area-
preserving manner. The Jacobian determinant of this transformation

𝐽𝒚 (𝒑) = [𝐷 (𝒑)]2 (40)

is the ratio between the areas of 𝐵𝒑 and �̂�. With that, we can rewrite
Eq. (19) as an integral with a fixed integration domain:

𝒗 (1) (𝒑) = 1
|𝐵𝒑 |

∫
�̂�

𝒗 (0) (𝒚(𝒙 ;𝒑)) 𝐽𝒚 (𝒑) d𝒙 . (41)

To demonstrate the continuity, we need to check whether 𝒗 (1) (𝒑0)
equals lim𝒑�𝒑0 𝒗

(1) (𝒑). We observe that all the terms (|𝐵𝒑 |, 𝒚, and
𝐽𝒚) are continuous except for 𝒗 (0) . Since 𝒗 (0) is piecewise continu-
ous, 𝒗 (0) (𝒚0) equals lim𝒚�𝒚0 𝒗

(0) (𝒚) almost everywhere, except for
points at the intersection of 𝐵𝒑 and the medial axis of boundaries
(denoted as med(𝜕Bwa)), i.e., 𝒚0 ∈ S := med(𝜕Bwa) ∩ 𝐵𝒑 . Fortu-
nately, S has measure zero and thus does not affect the result of the
integral. Therefore, 𝒗 (1) is a continuous function of class 𝑪0, and it

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

16 • Wu et al.

is differentiable almost everywhere except on the medial axis (we
present its directional derivatives in Sec. 5.2).

B Proof of directional derivatives
For a small 𝜀 > 0, the directional derivative 𝜕𝒅𝒗 is written as

𝜕𝒅𝒗 (𝒑) = lim
𝜀�0

𝒗 (𝒑 + 𝜀𝒅) − 𝒗 (𝒑)
𝜀

. (42)

Since 𝒒 is the projection of 𝒑, we know that 𝒗 (𝒑) = 𝒖 (𝑀) (𝒒). By the
relationship in projective geometry, because �̂� is the projection of 𝒅
onto the tangent plane at 𝒒, the point 𝒒 + 𝜀�̂� is also the projection
of 𝒑 + 𝜀𝒅 onto the tangent plane at 𝒒. When 𝜀 approaches zero, we
have

lim
𝜀�0

𝒗 (𝒑 + 𝜀𝒅) = lim
𝜀�0

𝒗 (𝒒 + 𝜀�̂�) = lim
𝜀�0

𝒖 (𝑀) (𝒒 + 𝜀�̂�) . (43)

Combining Eqs. (42) and (43), we have the final result

𝜕𝒅𝒗 (𝒑) = lim
𝜀�0

𝒖 (𝑀) (𝒒 + 𝜀�̂�) − 𝒖 (𝑀) (𝒒)
𝜀

= 𝜕�̂�𝒖
(𝑀) (𝒒) . (44)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Handling Discontinuities in Differentiable Rendering
	2.2 Monte Carlo PDE Solvers
	2.3 Accelerated Spatial Queries in Graphics

	3 Preliminaries
	3.1 Warped-Area Reparameterization
	3.2 Problem: Construction of Velocity Fields
	3.3 Toy Example in 1D

	4 Overview
	4.1 First Attempt: Constructing bold0mu mumu vvfalsevvvv Using Walk-on-Spheres
	4.2 Challenges and Our Solution

	5 Reparameterization Using Fixed-Step Walk-on-Spheres
	5.1 Walk-on-Spheres: From Random Steps to Fixed Steps
	5.2 Reparameterization with bold0mu mumu vvfalsevvvv(M) and bold0mu mumu ddfalseddddbold0mu mumu vvfalsevvvv(M)

	6 Practical Differential Visibility in 3D Using Walk-on-Spherical-Caps And Closest Silhouettes
	6.1 Finding Closest Silhouette Points
	6.2 Fixed-Step Walk-on-Spherical-Caps: From Flat to Spherical Surfaces

	7 Results
	7.1 Validation
	7.2 Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Proof of bold0mu mumu vvfalsevvvv(1)bold0mu mumu CCfalseCCCC0
	B Proof of directional derivatives

